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Abstract— This paper presents a data-driven simulator under
development for electric vehicle charging that emulates a
high-fidelity digital environment for operations management
of charging stations. We briefly introduce the key modules
that frame the simulator, including data inputs, models, and
algorithms, and the general goals of managing electric vehicle
charging. We further highlight its potential benefits from a
broader urban perspective, discussing the external connections
with traffic patterns, station siting and sizing, and distribu-
tion grid upgrade. Finally, we demonstrate the development
of the simulator through the design of a degradation-aware
reinforcement learning algorithm that can implement vehicle-
to-grid while taking into account electric vehicle battery health.

I. INTRODUCTION

Electrification of transportation systems can effectively
reduce fossil fuel over-reliance and greenhouse gas emis-
sions, provided that electricity is generated from low-carbon
renewable energy resources. The market share of electric
vehicles (EV) in China is soaring, driven by carbon-neutral
policies, along with the large-scale deployment of charging
infrastructure and advances in battery technologies. Despite
the promising EV proliferation, the daily uses of charging
facilities are still limited to basic functions such as energy
delivery, measurement, and monitoring, letting go of the huge
charging flexibility that EVs can offer while parking.

However, harnessing such flexibility faces several key
bottlenecks. First, there is a variety of sources of uncertainty
in real-time decision making for charging. Second, a well-
designed business model that incentivizes flexible charging
is still missing. Third, it is difficult to visualize the potential
connections with externalities, such as traffic patterns, station
siting and sizing, and distribution grid upgrade.

To address these challenges in real-world applications,
we developed a data-driven simulator framework that builds
upon [1] but extends in several ways. The purpose of this
abstract is to provide a brief overview of our simulator. First,
multi-source data are collected as input to enrich the potential
functions of flexible EV charging. Second, battery models
of different levels of fidelity are equipped that allow the
design, analysis and testing of novel charging algorithms.
Third, interfaces with externalities are available to study and
enhance the urban role of flexible EV charging. We provide
slightly more details on these extensions in Section II, and
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demonstrate one particular example of algorithm design in
Section III. In general, the simulator aims to (i) improve
operations management of EV charging stations as a digital
twin; (ii) provide a high-fidelity digital environment for
research simulation purposes.

II. SIMULATOR

This section gives an overview of the key modules of
our simulator; see Fig. 1. The libraries of data, models and
algorithms can be readily expanded as needed.

Fig. 1. Simulator Framework

A. Data

• Demand: The set of demand data is denoted as N ,
which we will also abuse to denote the set of EVs
serviced. A charging request i ∈ N takes the form of a
tuple xi := (ai,di,ei) ∈ R3, where ai denotes the arrival
time, di denotes the duration, and ei denotes the total
energy to be delivered in kWh. As an example, we
import public real-world data from [2] and use the
Gaussian Mixture Model (GMM) to approximate the
underlying probability distribution of the data set; see
Fig. 2. In this way, synthetic data of charging requests
can be generated from this statistical model to overcome
any shortfall of real-world data.

• Solar Generation & Electricity Price: Solar generation
and (time-varying) electricity prices are examples of
inputs that may drive flexible EV charging for purposes
of low carbon footprints and economic incentives, re-
spectively. We currently use data from external sources,
e.g., the Australian solar PV station dataset with 1-
minute granularity, and the time-of-use electricity prices
from the North China Power Grid. After extensive
case studies with the daily solar data, we observe that
it can be well represented using a one-dimensional
mixed Gaussian distribution plus white noise. Besides,20
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Fig. 2. Scatter Plot of Demand Data

electricity price profiles (prices and times) can also be
tailored for test case studies.

B. Model and Algorithm
Models are intended for the characterization of physical

battery charging processes and operational constraints, such
as maximum allowable charging rates, capacity, etc. We
currently maintain approximate models of Level-2 charg-
ing networks on the Caltech and JPL campuses. Given
a particular model, charging algorithms can be designed
to pursue various goals. We retain some standard online
algorithms, e.g., First-Come First-Served (FCFS), Earliest
Deadline First (EDF), and Least-Laxity-First (LLF), but also
allow customizing algorithm designs, leading to an MPC-
based peek-shaving algorithm and a battery degradation-
aware charging algorithm (in Section III). The performance
of different algorithms can be visualized for comparison.

C. Connection with Externalities
The current version of the simulator mainly focuses on the

operations management of EV charging stations. However,
we recognize the important role that such a simulator may
play in an urban perspective. Our simulator is expected to
interact with many externalities that will have a broader
socio-economic impact, e.g., traffic patterns, station siting
and sizing, distribution grid upgrade. We plan to pursue
collaborations with relevant research teams on these topics.

Traffic Patterns & Station Siting and Sizing: Through
analyzing traffic patterns that are directly related to EV
charging demand, we can have a better sense of what the
demand profile looks like. This extra knowledge can assist
the charging algorithms in improving the service quality
and lowering operational costs. The siting and sizing of
EV charging stations in turn affects traffic patterns and
forms a closed loop. Addressing such problems contributes
to efficient access to charging facilities and, to some extent,
relieves traffic/station congestion.

Distribution Grid Upgrade: One significant benefit of
flexible EV charging is the shiftable charging demand that
allows a lowered peak. This immediately implies reduced
transformer capacity and line rating, and consequently de-
layed distribution grid upgrade. Additionally, the well man-
aged EV charging and the forthcoming vehicle-to-grid (V2G)
technologies can help accommodate the uncertainty and
variability of renewables, which enhances the stability and
reliability of urban power distribution systems.

III. EXAMPLE: BATTERY DEGRADATION AWARE
CHARGING ALGORITHM

V2G is a promising battery technology that plays a key
role in reducing EV station operational costs, integrating
renewables, and relieving overloading on the grid. However,
it unavoidably causes battery degradation that is often diffi-
cult to quantify. Therefore, we propose a battery degradation
aware charging algorithm based on the Rainflow-counting
algorithm that allows us to trade the benefits of V2G off
against the potential cost of battery degradation in real time.

The Rainflow algorithm is widely used to count battery
charge-discharge cycles, as shown in Fig. 3, the depth of
which is the dominant factor in degradation. However, here
are two major challenges: (i) the Rainflow algorithm is easy
to describe but there is no analytical form of its input-output
relations; (ii) the Rainflow algorithm works on a full State-
of-Charge (SoC) profile that spans a whole time horizon,
making it inapplicable to online implementation.

Fig. 3. Rainflow Cycle Counting: Extraction of Full Cycles

Our Solution: First, we adopt a piecewise linear cost model
with increasing marginal cost per unit cycle depth. This is a
discretized version of the Rainflow cost function. In this way,
the energy in the battery, up to its capacity, is also discretized
and each segment has its cost if charged or discharged. We
show that if we always charge and discharge the cheapest
energy segment in the battery, the accumulative cost equals
the (discretized) Rainflow cost.

Second, based on the above property, we formulate the
charging scheduling problem on a Markov Decision Pro-
cess (MDP) with proper definition of state/action/reward
spaces. The state includes not only the EV SOC but also
the exact available energy segments. Actions are charging
decisions and rewards include the corresponding costs of
charging/discharging energy segments. In this way, degra-
dation information is decoupled across time and embedded
in action feedback.

Last, note that a well-defined MDP optimization problem
can be solved through sequential interaction with the environ-
ment, using any standard reinforcement learning algorithms.
Therefore, an optimal online charging strategy will become
available whenever it is learnt (almost surely).
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