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Dissipative Gradient Descent Ascent Method:
A Control Theory Inspired Algorithm for

Min-Max Optimization
Tianqi Zheng , Nicolas Loizou, Pengcheng You , and Enrique Mallada , Senior Member, IEEE

Abstract—Gradient Descent Ascent (GDA) methods for
min-max optimization problems typically produce oscil-
latory behavior that can lead to instability, e.g., in
bilinear settings. To address this problem, we introduce
a dissipation term into the GDA updates to dampen
these oscillations. The proposed Dissipative GDA (DGDA)
method can be seen as performing standard GDA on a
state-augmented and regularized saddle function that does
not strictly introduce additional convexity/concavity. We
theoretically show the linear convergence of DGDA in the
bilinear and strongly convex-strongly concave settings and
assess its performance by comparing DGDA with other
methods such as GDA, Extra-Gradient (EG), and Optimistic
GDA. Our findings demonstrate that DGDA surpasses these
methods, achieving superior convergence rates. We sup-
port our claims with two numerical examples that showcase
DGDA’s effectiveness in solving saddle point problems.

Index Terms—Optimization, optimization algorithms,
Lyapunov methods.

I. INTRODUCTION

IN RECENT years, there has been a significant focus
on solving saddle point problems, namely min-max

optimization problems [1], [2], [3], [4], [5]. These problems
have garnered considerable attention, particularly in fields
such as Generative Adversarial Networks (GANs) [5], [6], [7],
Reinforcement Learning (RL) [8], and Constrained RL (C-
RL) [9], [10]. However, a major challenge in these approaches
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is the instability of the training process. That is, solving
the min-max optimization problem via running the standard
Gradient Descent Ascent (GDA) algorithm often leads to
unstable oscillatory behavior rather than convergence to the
optimal solution. This is particularly illustrated in bilin-
ear min-max problems, such as the training of Wasserstein
GANs [11] or solving C-RL problems in the occupancy
measure space [12], for which the standard GDA fails to
converge [1], [2].

In order to understand the instability of the GDA method
and further tackle its limitation, we draw inspiration from the
control-theoretic notions of dissipativity [13], which enables
the design of stabilizing controllers using dynamic (state-
augmented) components that seek to dissipate the energy
generated by the unstable process. This aligns with recent
work that leverages control theory tools in the analysis and
design of optimization algorithms [14], [15], [16], [17], [18],
[19]. From a dynamical system point of view, dissipativity
theory characterizes how energy dissipates within the system
and drives it towards equilibrium. It provides a direct way to
construct a Lyapunov function, which further relates the rate
of decrease of this internal energy to the rate of convergence
of the algorithm.

We motivate our developments by looking first at a simple
scalar bilinear problem wherein the system’s energy, expressed
as the square 2-norm distance to the saddle, strictly increases
on every iteration, leading to oscillations of increasing ampli-
tude. To tackle this unstable oscillating behavior, we propose
the Dissipative GDA method, which, as the name suggests,
incorporates a simple friction term to GDA updates to dissipate
the internal energy and stabilize the system. Our algorithm
can be seen as a discrete-time version of [20], which has been
applied to solve the C-RL problems [9]. In this letter, we build
on this literature, making the following contributions:

1. Novel control theory inspired algorithm: We illustrate
how to use control theoretic concepts of dissipativity theory to
design an algorithm that can stabilize the unstable behavior of
GDA. Particularly, we show that by introducing a friction term,
the proposed DGDA algorithm dissipates the stored internal
energy and converges toward equilibrium.

2. Theoretical analysis with better rates: We establish the
linear convergence of the DGDA method for bilinear and
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TABLE I
GLOBAL CONVERGENCE RESULTS FOR BILINEAR

OBJECTIVE FUNCTIONS

strongly convex-strongly concave saddle point problems. In
both settings, we show that the DGDA method outperforms
other state-of-the-art first-order explicit methods, surpassing
standard known linear convergence rates (see Tables I and II).

3. Numerical Validation: We corroborate our theoreti-
cal results with numerical experiments by evaluating the
performance of the DGDA method with GDA, EG, and
OGDA methods. When applied to solve bilinear and strongly
convex-strongly concave saddle point problems, the DGDA
method systematically outperforms other methods regarding
convergence rate.

Outline: The rest of this letter is organized as follows.
In Section II, we provide some preliminary definitions and
background. In Section III, we leverage tools from dissipativity
theory and propose the Dissipative GDA (DGDA) algorithm
to tackle the unstable oscillatory behavior of GDA methods. In
Section IV, we establish its linear convergence rate for bilinear
and strongly convex-strongly concave problems, which outper-
forms state-of-the-art first-order explicit algorithms, including
GDA, EG, and OGDA methods. In Section V, we support
our claims with two numerical examples. We close this letter
with concluding remarks and future research directions in
Section VI.

II. PROBLEM FORMULATION

In this letter, we study the problem of finding saddle points
in the min-max optimization problem:

min
x∈Rn

max
y∈Rm

f (x, y), (1)

where the function f : R
n × R

m → R is a convex-concave
function. Precisely, f (·, y) is convex for all y ∈ R

m and
f (x, ·) is concave for all x ∈ R

n. We seek to develop a novel
optimization algorithm that converges to some saddle point
(x∗, y∗) of Problem 1.

Definition 1 (Saddle Point): A point (x∗, y∗) ∈ R
n ×R

m is
a saddle point of convex-concave function (1) if and only if it
satisfies f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗) for all x ∈ R

n, y ∈ R
m.

Throughout this letter, we consider two specific instances
of Problem 1 commonly studied in related literature: strongly
convex-strongly concave and bilinear functions. Herein, we
briefly present some definitions and properties.

Definition 2 (Strongly Convex): A differentiable function
f : R

n → R is said to be μ-strongly convex if f (w) ≥
f (w′) + ∇f (w)T(w − w′) + μ

2 ‖w − w′‖2.

TABLE II
GLOBAL CONVERGENCE RESULTS FOR STRONGLY
CONVEX-STRONGLY CONCAVE AND L-LIPSCHITZ

OBJECTIVE FUNCTIONS

Notice that if μ = 0, then we recover the definition of
convexity for a continuously differentiable function and f (w)

is μ-strongly concave if −f (w) is μ-strongly convex. Another
important property commonly used in the convergence analysis
of optimization algorithms is the Lipschitz-ness of the gradient
∇f (w).

Definition 3 (L-Lipschitz): A function F : R
n → R

m is
L-Lipschitz if ∀w, w′ ∈ R

n, we have ‖F(w) − F(w′)‖ ≤ L‖
w − w′‖.

Combining the above two properties leads to the first impor-
tant class of problem that has been extensively studied [1],
[2], [21], [22].

Assumption 1 (Strongly Strongly Convex-Concave
Functions with L-Lipschitz Gradient) The function
f : Rn × R

m → R is continuously differentiable, μ strongly
convex in x, and μ strongly concave in y. Further, the gradient
vector (∇xf (x, y);−∇yf (x, y)) is L-Lipschitz.

It is also crucial to consider situations where the objective
function is bilinear. Such bilinear min-max problems often
appear when solving constrained reinforcement learning prob-
lems [9], [23], and training of WGANs [11].

Assumption 2 (Bilinear Function): The function f : R
n ×

R
m → R is a bilinear function if it can be written in the form

f (x, y) = xTAy. For simplicity, we further assume that the
matrix A ∈ R

m×n is full rank, with m ≤ n.
As seen in Tables I and II as well as in Section IV, the linear

convergence rates of existing algorithms are frequently char-
acterized by the condition number κ . Specifically, when the
objective function is bilinear, the condition number is defined
as κ := σ 2

max(A)/σ 2
min(A), where σmax(M) and σmin(M) denote

the largest singular value and smallest singular of a matrix M
respectively. When the objective function is strongly convex-
strongly concave with the L-Lipschitz gradient, the condition
number of the problem is defined as κ := L/μ.

III. DISSIPATIVE GRADIENT DESCENT

ASCENT ALGORITHM

This section introduces the proposed first-order method for
solving the min-max optimization problem 1. The algorithm
can be seen as a discretization of the algorithm proposed
by [20], wherein a regularization framework was introduced
for continuous saddle flow dynamics that guarantees asymp-
totic convergence to a saddle point under mild assumptions.
However, the analysis presented in [20] does not generally
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Fig. 1. Trajectories of states for GDA and DGDA for the simple bilinear
objective function f (x, y) := xy.

extend to discrete time. In this letter, we show the linear
convergence of the discrete-time version of this algorithm.

Our results build on gaining an intuitive understanding of
the problems that one encounters when applying the vanilla
GDA method to solve saddle point problems (1):

Gradient Descent Ascent (GDA)

xk+1 = xk − η∇xf (xk, yk), yk+1 = yk + η∇yf (xk, yk). (2)

When (1) is strongly convex-strongly concave with L-
Lipschitz gradients, the GDA method provides linear
convergence, with step size η = μ/L2 and a know rate estimate
of 1 − 1/κ2 [24]. However, when the problem is bilinear, the
GDA method fails to converge, illustrated in Figure 1.

Our proposed algorithm draws inspiration from dissipative
theory in control by introducing two dynamic feedback con-
trollers (friction) to dissipate the energy stored and amplified
by the GDA algorithm. This is implemented in the form of
high pass filters of the form

ζk+1 = ζk − ρ(ζk − vk), wk = ρ(vk − ζk), (3)

with transfer function ŵ(z) = z−1
z−(1−ρ)

v̂(z), that is
interconnected in negative feedback to attenuate dampen the
oscillations of both xk and yk. This modification leads to
the following proposed algorithm, effectively dampening the
oscillations in our illustrative example in Figure 1.

Dissipative gradient descent ascent (DGDA):⎡
⎢⎢⎣

xk+1
x̂k+1
yk+1
ŷk+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xk − η∇xf (xk, yk) − ρ
(
xk − x̂k

)
x̂k − ρ

(
x̂k − xk

)
yk + η∇yf (xk, yk) − ρ

(
yk − ŷk

)
ŷk − ρ

(
ŷk − yk

)

⎤
⎥⎥⎦ (4)

Particularly, for f as in (1), in (4) we introduce two new
sets of variables x̂ ∈ R

n and ŷ ∈ R
m and a damping parameter

ρ > 0. One important observation is that, due to the high-
pass filter structure of the feedback, once the system reaches
equilibrium, i.e., xk+1 = xk, yk+1 = yk, x̂k+1 = x̂k, ŷk+1 =
ŷk, one necessarily has x̂k = xk and ŷk = yk, which ensures
that the fixed point is necessarily a critical point of the saddle
function.

The first important observation is that the above DGDA
update could be considered as applying a vanilla GDA update
to the following regularized surrogate for f (x, y):

f
(
x, y, x̂, ŷ

)
:= f (x, y) + ρ

2
‖x − x̂‖2 − ρ

2
‖y − ŷ‖2. (5)

While our algorithm also introduces two regularizing terms,
the following Lemma verifies the fixed positions of saddle
points between f (x, y) and f (x, y, x̂, ŷ) with virtual variables
aligned with original variables.

Lemma 1 Saddle Point Invariance [20, Lemma 6]: For
problem 1, a point (x∗, y∗) is a saddle point of f (x, y) if and
only if (x∗, y∗, x̂∗, ŷ∗) is a saddle point of f (x, y, x̂, ŷ), with
x̂∗ = x∗ and ŷ∗ = y∗.

More interestingly, the regularization terms, ρ
2 ‖x − x̂‖2 and

ρ
2 ‖y − ŷ‖2, do not introduce extra strong convexity-strong
concavity to the original problem. Precisely, the augmented
problem f (x, y, x̂, ŷ) is neither strongly convex on (x, x̂) nor
strongly concave on (y, ŷ). Indeed, on the hyperplane of x = x̂
and y = ŷ, the augmented problem recovers the original
problem f (x, y, x̂, ŷ) = f (x, y).

We finalize this section by comparing DGDA with recent
efforts to solve min-max optimization problems. We note that
DGDA is different from the Proximal Point Method [21] or
introducing a L2 regularization [25]. Notably, in [26] they
introduce an accelerated proximal point method, MINIMAX-
APPA that has Õ(

√
κxκy) gradient complexity, matching the

theoretical lower bound up to logarithmic factors. In the fol-
lowing section, we will show that our proposed algorithm gets
a comparable and slightly better complexity bound O(

√
κxκy),

while we do not require x, y to belongs to bounded sets.
Recent research has also utilized Moreau-Yosida smoothing

techniques to tackle various optimization problems, ranging
from nonconvex-concave [27], [28], [29] to nonconvex-
nonconcave optimization problems [30]. These approaches
also fall under the category of first-order Implicit methods.
In this letter, we focus on comparing with first-order Explicit
algorithms. While our primary focus lies on strongly convex,
strongly concave, and bilinear settings, we also delve into fur-
ther analyses across other contexts, including nonconvex [27],
[28], [29], [30] and stochastic settings [31], [32].

IV. CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of the
proposed algorithm. Consider a quadratic Lyapunov function
to track the energy dissipation of the DGDA updates

Vk := ‖xk − x∗‖2 + ‖yk − y∗‖2 + ‖x̂k − x̂∗‖2 + ‖ŷk − ŷ∗‖2,

which denotes the square 2-norm distance to the saddle point
at the k-th iteration. The goal is, therefore, to find some 0 ≤
α < 1 such that Vk+1 ≤ αVk, where α denotes the linear
convergence rate.

A. Convergence Analysis for Bilinear Functions

When applied to the bilinear min-max optimization problem
f (x, y) = xTAy, the DGDA update (4) is equivalent to a linear
dynamical system. Specifically, denote z = [x, y]T , ẑ = [x̂, ŷ]T

yields:[
zk+1 − z∗
ẑk+1 − ẑ∗

]
=
[
(1 − ρ)I − ηM ρI

ρI (1 − ρ)I

][
zk − z∗
ẑk − ẑ∗

]
, (6)

where M =
[

0 A
−AT 0

]
. Therefore, the linear convergence rate

of DGDA can be derived from the analysis of the spectrum

Authorized licensed use limited to: Peking University. Downloaded on January 26,2025 at 10:40:59 UTC from IEEE Xplore.  Restrictions apply. 



2012 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

of the associated matrix that defines the DGDA update in (6).
This yields the following theorem.

Theorem 1 (Linear Convergence of DGDA, Bilinear Case):
Let Assumption 2 hold. Then the updates 4 of DGDA with 0 <

η ≤ 2ρ
σmax(A)

and ρ > 0 provide linearly converging iterates:

Vk ≤ O
((

1 − 2ρ + 2ρ2 + (1 − ρ)

√
4ρ2 − η2σ 2

min(A)

)k
)

V0,

Particularly, setting ρ = 1/2 and η = 1/σmax(A) we have

Vk ≤ O
((

1 − 1

4κ

)k
)

V0. (7)

Proof: We consider, for ease of presentation, the case when
A ∈ R

m×m is a square non-singular matrix, i.e., the point
(x∗, y∗) = (0, 0) is the unique saddle point. The extension for
non-square matrices is straightforward and has been covered
in the literature [33, Appendix G]. According to [2, Lemma 7],
we have Sp(M) = {±iσ |σ 2 ∈ Sp(AAT)}. Therefore, we can
compute the eigenvalues of system (6):

μj = 1 − ρ ± i

(
1

2
ησj

)
± 1

2

√
4ρ2 − η2σ 2

j , (8)

where ±iσj ∈ Sp(M). Suppose that for all j ∈ [m] , we choose
0 < η ≤ 2ρ

σmax
≤ 2ρ

σj
and ρ > 0, which implies 4ρ2 − η2σ 2

j ≥
0, then we can construct the following upper bound for the
magnitude of eigenvalues,

|μj|2 = 1 − 2ρ + 2ρ2 ± (1 − ρ)

√
4ρ2 − η2σ 2

j (9)

< 1 − 2ρ + 2ρ2 + (1 − ρ)

√
4ρ2 = 1 . (10)

It follows from standard linear systems theory, e.g.,
[34, Th. 8.3], the above spectral radius analysis of the linear
system (6) results in the following linear convergence rate
estimate:

Vk ≤ O
((

1 − 2ρ + 2ρ2 + (1 − ρ)

√
4ρ2 − η2σ 2

min

)k
)

V0,

where Vk := ‖xk −x∗‖2 +‖yk −y∗‖2 +‖x̂k − x̂∗‖2 +‖ŷk − ŷ∗‖2.
Furthermore, the analysis of the above bound identifies the
following optimal step sizes η = 2ρ

σmax
and ρ = 1

2 , and the
following linear convergence rate estimate

Vk ≤ O
((

1 − 1

4κ

)k
)

V0. (11)

We remark that linear convergence requires ρ > 0. This
is not surprising since GDA, which is known to diverge for
bilinear functions, can be interpreted as the DGDA method
when ρ = 0. More importantly, by choosing the optimal step
size ρ = 1/2, η = 1/σmax(A), DGDA method achieves a
better linear convergence rate than the EG and OGDA methods
(see Table I).

B. Convergence Analysis for Strongly Convex Strongly
Concave Functions

We now consider the case of strongly convex-
strongly concave min-max problems. Let F(zk) :=
(∇xf (xk, yk),−∇yf (xk, yk)). The DGDA updates can be written
as follows:[

zk+1
ẑk+1

]
=
[

zk − ηF(zk) − ρ
(
zk − ẑk

)
ẑk − ρ

(
ẑk − zk

)
]

(12)

Because of the existence of the nonlinear term F(zk),
we cannot analyze the spectrum as in the previous bilinear
case. This is indeed a common challenge in analyzing most
optimization algorithms beyond a neighborhood of the fixed
point. We circumvent this problem by leveraging recent results
on the analysis of variational mappings as F(·) via integral
quadratic constraint [15], [16], [17].

Theorem 2 (Linear Convergence of DGDA, Strongly
Convex-Strongly Concave Case): Let Assumption 1 hold, then
the updates (4) with ρ = 1/2 and η = 1/(L + μ) of the
DGDA algorithm provide linearly converging iterates:

Vk ≤
(

1 − κ−1 + O
(
κ−2

))k

V0 (13)

Proof: Given a linear dynamical system of the form: ξk+1 =
Aξk + Bwk, where ξ ∈ R

nξ is the state, wk ∈ R
nw is the

input, A is the state transition matrix and B is the input matrix.
Suppose that there exist a (Lyapunov) function V , satisfying
V(ξ) ≥ 0,∀ξ ∈ R

nξ , some 0 ≤ α < 1 and a supply rate
function S(ξk, wk) ≤ 0,∀k such that

V(ξk+1) − α2V(ξk) ≤ S(ξk, wk), (14)

then this dissipation inequality (14) implies that V(ξk+1) ≤
α2V(ξk), and the state will approach a minimum value at
equilibrium no slower than the linear rate α2 [15]. According
to [17, Lemma 6], we could construct the following Linear
Matrix Inequality and supply rate function for DGDA updates,
by augmenting the states ξk = (zk; ẑk),

S(ξk, wk) =
⎡
⎣

zk

ẑk

wk

⎤
⎦

T⎡
⎣

2μLI 0 (−μ + L)I
0 0 0

(−μ + L)I 0 2I

⎤
⎦
⎡
⎣

zk

ẑk

wk

⎤
⎦ ≤ 0 (15)

where the nonlinear operator F(zk) meets the conditions
specified in Assumption 1.

Finally, according to [15, Th. 2], constructing the dissi-
pation inequality (14) and proving linear convergence can
be achieved through solving a semidefinite programming
problem. Precisely, if there exists matrix XT = X and P ∈
R

nξ ×nξ with P  0 such that[
ATPA − α2P ATPB

BTPA BTPB

]
− X ≤ 0, (16)

where S(ξ, w) :=
[
ξ

w

]T

X

[
ξ

w

]
, then the dissipation inequality

holds for all trajectories of ξk+1 = Aξk + Bwk, with V(ξ) =
ξTPξ . Given the set of problem parameters, a set of feasible
solutions is given by:

ρ = 1

2
, η = 1

L + μ
, P =

[
(L + μ)2 0

0 (L + μ)2

]
⊗ I,(17)
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Fig. 2. Convergence of GDA, EG, OGDA, and DGDA in terms of the
number of gradient evaluations for the bilinear problem. GDA diverges
and the error is not shown. All other three algorithms converge linearly,
where the DGDA method provides the best performance.

α2 = 3L2 + 2Lμ + 3μ2 +
√

(L + μ)4 + 16L2μ2

4(L + μ)2
. (18)

After substituting the condition number κ := L/μ, the
convergence rate simplifies to α2 = 1 − κ−1 + O((

μ
L )2)

Similarly, as in the bilinear case, we remark on the
importance of the dissipation component. When ρ = 0, a
similar analysis as in the proof of the theorem recovers the
lower bound of the convergence rate of GDA (1 − κ−2) as
shown in [18, 3.1]. Thus, our DGDA method provides a
better convergence rate estimate than GDA, since clearly κ ∈
[1,∞), and therefore κ−2 ≤ κ−1. Additionally, Theorem 2
and Theorem 3 indicate that if we want to achieve an ε-
accurate solution, we need to run at most O(κ log(1/ε))

iterations (gradient evaluations).
We remark that while the rate obtained in Theorem 2 is

better than those of the EG and OGDA methods for large
condition numbers κ (see Table II), the theorem fails to
quantify the comparative performance of DGDA for small
values of κ . The following corollary shows that indeed, the
rate of DGDA is provably better for all κ ≥ 2.

Corollary 1 (SCSC, Comparison with Known Rates): Let
Assumption 1 hold, and suppose that L ≥ 2m, i.e., κ ≥ 2.
Then, the linear convergence rate estimate of DGDA (13) is
smaller (better) than that of EG and OGDA, i.e., 1 − κ−1/4
([2, Th. 6 and 7] and [1, Th. 4 and 7]).

V. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the proposed
Dissipative gradient descent (DGDA) method with the Extra-
gradient (EG), Gradient descent ascent (GDA), and Optimistic
gradient descent ascent (OGDA) methods.

A. Bilinear Problem

We first consider the following bilinear min-max
optimization problem: minx∈Rn maxy∈Rm xTAy, where A ∈
R

m×n is full-rank. The simulation results are illustrated in
Figure 2. In this experiment, we set the dimension of the
problem to m = n = 10 and the iterates are initialized at x0, y0,
which are randomly drawn from the uniform distribution on
the open interval (0, 1).

We plot the errors (distance to saddle points) of DGDA,
EG, and OGDA versus the number of gradient evaluations

for this problem in the left plot of Figure 2. The solid line
and grey-shaded error bars represent the average trajectories
and standard deviations of 20 trials, where in each trial the
randomly generated matrix A has a fixed condition number,
i.e., κ = σ 2

max(A)/σ 2
min(A) = 25. The key motivation is that all

three algorithms’ convergence rates critically depend on κ−1,
and by fixing the condition number, we provide an explicit
comparison of their convergence speed.

We pick the step size for different methods according to
theoretical findings. That is, we select ρ = 1/2 and η =
1/σmax(A) for DGDA (Theorem 1), η = 1/4L = 1/4σmax(A)

for EG and OGDA ([2, Th. 6 and 7] and [1, Th. 4 and
7]). We do not show the error of GDA since it diverges for
this bilinear saddle point problem. All other three algorithms
converge linearly, with the DGDA method providing the best
performance.

Finally, to provide a qualitative demonstration of how
DGDA fares with other existing algorithms, we further plot
the sample trajectories of GDA, EG, OGDA, and EGDA on
a simple 2D bilinear min-max problem, with m = n = 1. In
right plot of Figure 2, we observe that while GDA diverges, the
trajectories of all other three algorithms converge linearly to
the saddle point (x∗, y∗) = (0, 0). Interestingly, our proposed
algorithm (DGDA) despite taking larger steps, exhibits faster
linear convergence.

B. Strongly Convex-Strongly Concave Problem

In the second numerical example, we focus on a strongly
convex-strongly strongly-concave quadratic problem of the
following form:

min
x∈Rn

max
y∈Rm

1

2
xTAx − 1

2
yTBy + xTCy, (19)

where the matrices satisfy μAI � A � LAI, μBI � B � LBI,
μ2

cI � CTC � L2
cI. As a result, the problem (19) satisfy

Assumption 1. In this experiment, we set the dimension of
the problem to n = 50, m = 10, and the iterates are initial-
ized at x0, y0, which are randomly drawn from the uniform
distribution on the open interval (0, 1). We plot the errors
(distance to saddle points) of GDA, DGDA, EG, and OGDA
versus the number of gradient evaluations for this problem
in Figure 3. Again, the solid line and grey-shaded error bars
represent the average trajectories and standard deviations of
20 trials, where in each trial the randomly generated matrix[

A C
−CT B

]
is chosen such that the condition number of (19)

remains constant, i.e., κ = L/μ = 31. Similarly as in the
bilinear problem in Section V-A, we pick the step size for
the DGDA method according to our theoretical finding in
Theorem 2. The step size of the GDA method is selected as
η = μ/L2 ([35, Th. 5]). The step sizes for EG and OGDA
methods are selected as η = 1/4L ([2, Th. 6 and 7] and [1,
Th. 4 and 7]). According to the plots, all algorithms converge
linearly, and the DGDA method has the best performance.

VI. CONCLUSION AND FUTURE WORK

In this letter, we present the Dissipative GDA (DGDA)
algorithm, a novel method for solving min-max optimization
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Fig. 3. Convergence of GDA, EG, OGDA, and DGDA in terms of the
number of gradient evaluations for problem 19. All algorithms converge
linearly, and the DGDA method has the best performance.

problems. Drawing inspiration from dissipativity theory and
control theory, we address the challenge of diverging oscilla-
tions in bilinear min-max optimization problems when using
the Gradient Descent Ascent (GDA) method. Particularly, we
introduce a friction term into the GDA updates aiming to
dissipate the internal energy and drive the system towards equi-
librium. By incorporating a state-augmented regularization,
our proposed DGDA method can be seen as performing stan-
dard GDA on an extended saddle function without introducing
additional convexity. We further establish the superiority of
the convergence rate of the proposed DGDA method when
compared with other established methods including GDA,
Extra-Gradient (EG), and Optimistic GDA. The analysis is
further supported by two numerical examples, demonstrating
its effectiveness in solving saddle point problems. Our future
work includes studying the DGDA method in a stochastic set-
ting and its application in solving Constrained Reinforcement
learning problems in the policy space.
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