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1 Introduction

1.1 Background, motivation, and contributions

We are at the cusp of a historic transformation of our energy system into a more
sustainable form in the coming decades. Electrification of our transportation
system will be an important component because vehicles today consume more
than a quarter of energy in the United States and emit more than a quarter of
energy-related carbon dioxide [3]. Electrification will not only greatly reduce
greenhouse gas emission, but also have a large impact on the future grid because
electric vehicles (EVs) are large but flexible loads [4]. The impact of EVs is
especially significant for microgrids that group locally interconnected loads and
distributed energy resources and act as an individual controllable entity either
to interact with the main grid in the grid-connected mode or stand alone in the
island mode. A microgrid is therefore an effective paradigm to integrate various
sources of renewables by fully utilizing its dispatchable elements, among which
EVs could play a momentous role. EVs, as moving storage in essence, readily
realize energy/power shift in both temporal and spatial domains by their routine
running and charging. It is foreseeable that a huge amount of flexibility can be
exploited from EV operation to complement microgrid operation.

As we will see in this chapter, there is a large literature on various aspects of
EV charging. It is widely believed that uncontrolled EV charging may stress
or even disrupt power grids, but well-controlled charging can help stabilize
grids and integrate renewables. However, we look at EV operation from a
different angle here (i.e., battery swapping). Instead of charging its battery when
an EV is running out of energy, it could have the depleted battery swapped
at a service station by a fully charged battery so as to avoid suffering the
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problem of long waits. All unloaded batteries are charged centrally at service
stations to prepare for future battery swapping demand. Battery swapping as a
refueling model for EVs, dating back to 2007 when it was first commercialized
by a start-up Better Place in Israel, has been reemerging in recent years with
major advances in battery charging and energy storage. Other than technological
innovation, operational breakthrough is another critical factor that contributes to
the bloom of battery swapping. Technically, this mechanism is implementable
with pilot programs already established in Israel and China. Its advantages
are fourfold. First, it takes only minutes to swap a battery but often hours
to recharge it. Second, the aggregation of charging loads reduces demand
uncertainty compared with individual EV charging, simplifying power system
operation. Third, the aggregation of charging loads endows service stations
with greater flexibility in scheduling battery charging and providing ancillary
services. Fourth, batteries, as the most costly core of an EV, can be leased rather
than purchased, tremendously lowering the expenditure for EV owners.

In the meantime, battery swapping is also faced with unique challenges in
popularization. First, it requires standardization of vehicles, batteries, and swap-
ping infrastructure, which has proven to be difficult. Second, a business model
is needed to address ownership, maintenance, and payment issues regarding
shared batteries. However, the problem we will study in this chapter circumvents
these obstacles and mainly focuses on an EV-station battery swapping system
supplied by a microgrid and its interactions, motivated by a novel battery
swapping model currently being pursued in China, especially for electric buses
and taxis [5]. The State Grid (one of the two national utility companies) of China
is experimenting with this model where it operates not only the power grid, but
also service stations and a taxi service around a city, which constitute a vertically
integrated system. When the state of charge of a State Grid taxi is low, it goes to
one of the State Grid operated service stations to exchange its depleted battery
for a fully charged one. While battery swapping takes only a few minutes, it is
not uncommon for taxis to arrive at a service station, only to find that it runs
out of fully charged batteries and there is a queue of taxis waiting to swap their
batteries. The occasional multihour waits are a serious impediment that degrades
the efficiency of battery swapping, which is predicated on having sufficient
fully charged batteries at service stations. In fact, it is often the case that some
service stations which EVs gather around run short of fully charged batteries
quickly while others accrue more and more. Obviously it is neither economical
nor practical to stock enough batteries at every service station to serve the
worst-case EV arrival patterns. This indicates that EVs have the incentive to
choose service stations so as to avoid long waits. On the other hand, microgrid
operation is also tremendously influenced by EVs’ battery swapping decisions
since battery charging loads are redistributed spatially in the network, which is
rich in load flexibility and bound to improve the system operating efficiency if
well managed.
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To this end, in this chapter we propose to coordinate battery swapping
in a microgrid such that EVs can make the most efficient use of currently
available batteries in the system and meanwhile the microgrid operation is
jointly optimized. Specifically, we formulate in Section 2 an optimal scheduling
problem for battery swapping in a microgrid that assigns to each EV a best
station to swap its depleted battery based on its current location and state of
charge. The station assignments not only determine EVs’ travel distance, but
also impact significantly the power flows on the microgrid because batteries
are large loads. The schedule aims to minimize a weighted sum of EVs’ travel
distance and electricity generation cost over both station assignments and power
flow variables, subject to EV range constraints, grid operational constraints, and
AC power flow equations.

This joint battery swapping and optimal power flow (OPF) problem is
nonconvex and computationally difficult for two reasons. First, AC power flow
equations are nonlinear. Second, the station assignment variables are binary. We
address the first difficulty in Section 2.1 by summarizing several representative
linearization/convexification methods to approximate/relax the nonlinear power
flow equations that prove to be accurate and effective given different network
topologies or parameterization. Fixing any station assignments, the remaining
OPF problem is then convex. The second difficulty can be properly addressed in
two fashions. The centralized solution in Section 3 applies generalized Benders
decomposition to the current mixed-integer convex program, and is suitable for
cases where the microgrid, service stations, and EVs are managed centrally by
the same operator (e.g., the State Grid model). Supposing an exact underlying
linearization/relaxation of the power flow equations is given, the generalized
Benders decomposition computes a global optimum in reasonable time. In this
centralized solution, the operator needs global information such as the grid
topology, impedances, operational constraints, background loads, availability
of fully charged batteries at each station, locations and states of charge of EVs,
etc. It is implementable only in a vertically integrated system like the State Grid
operated electric taxi program.

As EVs proliferate and battery swapping matures, an equally (if not more)
likely model will emerge where the microgrid is managed by a utility company,
service stations are managed by a station operator (or multiple station operators),
and EVs may be managed by individual drivers (or multiple EV groups, e.g.,
taxi companies in the electric taxi case). In particular, the set of EVs to be
scheduled may include a large number of private cars in addition to commercial
fleet vehicles. They may not be willing to share their private information. The
centralized solution will fail to apply for these future scenarios. Moreover,
generalized Benders decomposition solves a mixed-integer convex program
centrally and is still computationally expensive. It is hard to scale to compute in
real-time optimal station assignments and an (linearized/relaxed) OPF solution
when the numbers of EVs and stations are large.
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To this end, we develop scalable distributed solutions that preserve private
information and are more suitable for general scenarios. Instead of generalized
Benders decomposition, we relax the binary station assignment variables to real
variables in [0, 1]. With both the linearization/relaxation of power flow equations
and the relaxation of binary variables, the resulting approximate problem of
joint battery swapping and OPF is a convex program. This allows us to develop
two distributed solutions where separate entities make their individual decisions
but coordinate through information exchanges that do not involve their private
information in order to solve jointly the global problem.

The first solution, based on the alternating direction method of multipliers
(ADMM), is for systems where the microgrid is managed by a utility company
and all service stations and EVs are managed by a station operator. Here
the utility company maintains a local estimate of some aggregate assignment
information that is computed by the station operator, and they exchange the
estimate and the aggregate information to attain consensus. The second solution,
based on dual decomposition, is for systems where the microgrid is managed by
a utility company, all service stations are managed by a station operator, and all
EVs are individually operated. The utility company still sends its local estimate
to the station operator while the station operator does not need to send the
utility company the aggregate assignment information, but only some Lagrange
multipliers. The station operator also broadcasts Lagrange multipliers to all
EVs and individual EVs respond by sending the station operator their choices
of stations for battery swapping based on the received Lagrange multipliers
and their current locations and driving ranges. In both approaches, given the
aggregate assignment information and Lagrange multipliers that are exchanged,
different entities only need their own local states (e.g., power flow variables)
and local data (e.g., impedance values, battery states, EV locations, and driving
ranges) to compute iteratively their own decisions. See Fig. 1 for the distributed
framework.

Informa�on exchanges

Ut ility company

Sta�on operator

Locat ions,

Network

Fig. 1 Distributed framework.
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Suppose an exact underlying linearization/relaxation of the power flow
equations is given; the proposed distributed algorithms, however, may return
station assignments that are not binary due to the relaxation of binary variables,
which suggest a probabilistic station assignment for an EV. We prove an upper
bound on the number of such EVs with nonbinary station assignments. The
bound guarantees that the discretization can be readily implemented and also
justifies the final solution is close to optimum.

In Section 5, we illustrate the performance of our centralized and distributed
solutions through simulations on a real 56-bus test system from Southern
California Edison (SCE). The simulation results suggest that the centralized
solution is effective and computationally tractable for practical application, and
the distributed solutions are scalable and usually achieve satisfactory station
assignments under real conditions.

1.2 Literature

There is a large literature on EV charging, for example, optimizing charging
schedule for various purposes such as demand response, load profile flattening,
or frequency regulation [6–9]; architecture for mass charging [10–13]; loca-
tional marginal pricing for EV charging [14, 15]; and the interaction between
EV penetration and the optimal deployment of charging stations [16].

Sojoudi et al. [17] seem to be the first to optimize jointly EV charging and
AC power flow spatially and temporally through semidefinite relaxation. Zhang
et al. [18] extend the joint OPF-charging problem to multiphase distribution
networks and propose a distributed charging algorithm based on ADMM. Chen
et al. [19] decompose the joint OPF-charging problem into an OPF subproblem
that is solved centrally by a utility company and a charging subproblem that is
solved in a distributed manner by individual EVs through a coordinative valley-
filling signal from the utility company. De Hoog et al. [20] use a linear model
and formulate EV charging on a three-phase unbalanced grid as a receding
horizon optimization problem. It shows that optimizing the charging schedule
can increase the EV penetration that is sustainable by the grid from 10%–15%
to 80%. Linearization is also used in [21] to model EV charging on a three-
phase unbalanced grid as a mixed-integer linear program. The binarity arises
from the fact that an EV is either being charged at its peak rate or off. These
papers focus on jointly optimizing power flows and charging for EVs connected
to given locations on the grid. A key feature of battery swapping scheduling is,
however, the use of EV mobility to optimize explicitly the spatial redistribution
of charging loads.

The literature on battery swapping is much smaller. Tan et al. [22] propose
a mixed queuing network that consists of a closed queue of batteries and an
open queue of EVs to model the battery swapping processes, and analyze its
steady-state distribution. Yang et al. [23] design a dynamic operation model
of a battery swapping station and put forth a bidding strategy in power markets.
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You et al. [24] study the optimal charging schedule of a battery swapping station
serving electric buses and propose an efficient distributed solution that scales
with the number of charging boxes in the station. Sarker et al. [25] propose a
day-ahead model for the operation of battery swapping stations and use robust
optimization to deal with future uncertainty of battery demand and electricity
prices. Zheng et al. in [26] study the optimal design and planning of a battery
swapping station in a distribution system to maximize its net present value, tak-
ing into account life cycle cost of batteries, grid upgrades, reliability, operational
cost, and investment cost. Zhang et al. [27] discuss several business models of
battery swapping and leasing service in China. You et al. [28–30] present a
series of work on station assignment for EV battery swapping to make better
use of batteries in practical application. However, the impact of the assignments
on power systems is not taken into account. To the best of our knowledge, joint
optimization of battery swapping and power flows on microgrids has not been
investigated, which is becoming an emerging practical issue.

The distributed solutions are motivated by the need to preserve private
information of different entities operating microgrids, stations, and EVs. Privacy
in future grids is a key challenge facing both utilities and end users [31], for
example, see [32–35] for privacy concerns on smart meters and [36–38] for
privacy concerns on EVs. Distributed algorithms preserve privacy as global
information is not needed for local computations. Liu et al. [34] schedule
thermostatically controlled loads and batteries in a household to hide its actual
load profiles such that no sensitive information can be inferred from electricity
usage. Yang et al. [35] design an online control algorithm of batteries that only
uses the current load requirement and electricity price to optimize the tradeoff
between smart meter data privacy and users’ electricity cost. Liu et al. [39]
propose a consensus-based distributed speed advisory system that optimally
determines a common vehicle speed for a given area in a privacy-aware manner
to minimize the total emission of fuel vehicles or the total energy consumption
of EVs. Other applications can be found in data mining [40], cloud computing
[41], etc. To the best of our knowledge, this work is the first to discuss
the distributed scheduling of EV battery swapping in light of binary station
assignments and microgrid operation.

2 Problem formulation

We focus on the scenario where a fleet of EVs and a set of service stations
operate in a region that is supplied by a microgrid. We assume the microgrid,
service stations, and EVs are managed centrally by the same operator, for
example, the State Grid in China. Periodically, say, every 15 min, the system
determines a set of EVs that should be scheduled for battery swapping, for
example, based on their current states of charge or their requests for battery
swapping. At the beginning of the current control interval, the system assigns
to each EV in the set a service station for battery swapping. It is reasonable
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to assume that the EVs travel to their assigned service stations and finish
swapping their batteries before the end of the current interval, since typically
the geographic area served by a microgrid is limited. Under this assumption,
station assignments are decoupled across control intervals and our work focuses
on one such interval.

Batteries returned by the EVs start to be charged at the service stations
immediately (typically at service stations each battery is placed in a charging
box before being swapped, thus a returned battery can immediately find its place
in a charging box). Since we focus on the scheduling of battery swapping, we
assume for simplicity that these batteries are charged at the constant rated power
for the control interval under study, which contributes to better serving future
battery swapping demand as well. Optimizing charging rates over multiple
intervals can be integrated with battery swapping if more future information is
available, but that is beyond the scope of the current work. Our goal is to design
an assignment algorithm that minimizes a weighted sum of the distance traveled
by the EVs for battery swapping and electricity generation cost, while respecting
the EVs’ range constraints, the operational constraints of the microgrid, and AC
power flow equations.

In the following we formulate our optimal scheduling problem. For a finite
set K that consists of some natural numbers, its cardinality is denoted as |K|.
For a set of scalar variables yj, j ∈ K, its column vector is denoted as yK. yT

K
and yH

K denote its transpose and Hermitian transpose, respectively. Sometimes
the subscript K is dropped if the set is clear from the context. For a matrix Y ,
YT and YH denote its transpose and Hermitian transpose, respectively. Let Yi,j
be the (i, j)th element of Y and YK1K2 be a submatrix of Y composed of all the
element Yij, i ∈ K1 and j ∈ K2.

2.1 Network model

Consider a single-phase microgrid network with a connected directed graph G =
(N, E), where N := {0, 1, 2, . . . , N} and E ⊆ N×N. Each node in N represents a
bus and each edge in E represents a power line. Let N+ := {1, 2, . . . , N}. Bus 0
is a slack bus if G is a mesh network, or a root bus if G is a radial (tree) network.
We orient the graph, without loss of generality, by denoting a line in E by (j, k)
or j → k if it points from bus j to bus k. Let zjk be the complex impedance
of line (j, k) ∈ E, and yjk = 1

zjk
be the corresponding complex admittance. Let

Sjk := Pjk + iQjk denote the sending-end complex power from bus j to bus k
where Pjk and Qjk denote the real and reactive power flows, respectively. Define
Ijk as the complex current from bus j to bus k and Vj as the complex voltage
phasor of bus j with its angle denoted by θj. Assume the voltage V0 of bus 0 is
fixed and given.

Each bus j has a base load sb
j := pb

j + iqb
j (excluding the charging loads

from stations), where pb
j and qb

j denote the real and reactive power, respectively.
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Each bus j may also have distributed generation sg
j := pg

j + iqg
j . Let sj := pj + iqj

denote the net complex power injection given by

sj :=
{

sg
j − sb

j − se
j if bus j supplies a station

sg
j − sb

j otherwise

where se
j denotes the total charging load at bus j. We assume the base loads sb

j

are given and the generations sg
j and charging loads se

j are variables.
We then summarize three representative linearization/convexification meth-

ods to model the power flows on the microgrid that are useful depending on
network topologies and parameterization.

2.1.1 DC power flow equations
Assumptions:

1. The bus voltage magnitude is constant as 1.
2. Each line is lossless.
3. Reactive power injections and flow are ignored.
4. The bus phase angle difference across each line is small.

Given these standard assumptions for DC approximation, the generic AC power
flow equations reduce to∑

k:(j,k)∈E

Pjk =
∑

k:(i,j)∈E

Pij + pj, j ∈ N (1a)

Pjk = Bjk(θj − θk), j → k ∈ E (1b)

where Bjk is the negative susceptance of line (j, k). Eq. (1a) enforces nodal power
balance while Eq. (1b) defines line flows. This is the simplest linear model of
power flows and it applies to systems where (a) the line resistance is negligible,
and for normal operating points, (b) the bus phase angle difference across each
line is small, and (c) the bus voltage magnitude is very close to 1 in the per-unit
system.

The complex notation of Eq. (1) is only a shorthand for a set of real equations
in the real vector variables (p, P, θ) := (pj, Pjk, θj, j, k ∈ N, (j, k) ∈ E).

2.1.2 Fix-point linearization of power flow equations

Let ÎN+ := (Îj, j ∈ N+) be the vector of net current injections at all buses
j ∈ N+. The bus injection model of power flows can be written as

ÎN+ = YN+0V0 + YN+N+VN+ (2a)

N+ = diag(VN+)ÎH
N+ (2b)

where Y is the admittance matrix of the microgrid with Yij = −yij if i �= j
and Yii = ∑

j�=i yij if i = j. Eq. (2a) imposes nodal balance of current (power)
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while Eq. (2b) defines bus power injections. Substituting Eq. (2b) into Eq. (2a)
to eliminate ÎN+ , we can attain the following fixed-point equation:

VN+ = −Y−1
N+N+YN+0V0 + Y−1

N+N+diag−1(VH
N+)sH

N+ (3)

where the first term is a constant vector meaning zero-load voltage.
Given a nominal operation point (V̂N+ , ŝN+) that is a solution to Eq. (3), we

are able to linearize Eq. (2) in the following linear form based on one single
iteration of Eq. (3):

VN+ = J[pT
N+ , qT

N+]T + a (4a)

where J := [Y−1
N+N+diag−1(V̂H

N+), −iY−1
N+N+diag−1(V̂H

N+)] and a :=
− Y−1

N+N+YN+0V0. Let I := (Ijk, (j, k) ∈ E). It follows from [42] that |VN+|
and I can also be linearly approximated in terms of [pT

N+ , qT
N+]T :

|VN+| = K[pT
N+ , qT

N+]T + b (4b)

I = L[pT
N+ , qT

N+]T + c (4c)

s0 = D[pT
N+ , qT

N+]T + d (4d)

where K, L, D are also constant matrices dependent on V̂N+ and b, c, d are
constant vectors. We refer readers to [42] for the detailed derivation and
expressions of these parameters.

The fixed-point linearization of power flow Eq. (4) interpolates between
two power flow solutions (V̂N+ , ŝN+) and (a, 0), and is more computationally
affordable than a lot of classical methods, for example, the first-order Taylor
method. In most cases it also provides a better global approximation.

The complex notation of Eq. (4) is only a shorthand for a set of real equations
in the real vector variables (s, V , |V|, I) := (p, q, V , |V|, I) := (pj, qj, Vj, |Vj|, Ijk,
j, k ∈ N, (j, k) ∈ E).

2.1.3 DistFlow equations and SOCP relaxation
Suppose the microgrid is a radial network; the unique parent bus of each bus
j (except bus 0) is indexed by i := ij. Define ljk := |Ijk|2 as the squared
magnitude of the complex current from bus j to bus k and vj := |Vj|2 as the
squared magnitude of the complex voltage phasor of bus j.

We use the DistFlow equations proposed by Baran and Wu in [43] to model
power flows on the network:∑

k:(j,k)∈E

Sjk = Sij − zijlij + sj, j ∈ N (5a)

vj − vk = 2Re(zH
jkSjk) − |zjk|2ljk, j → k ∈ E (5b)

vjljk = |Sjk|2, j → k ∈ E (5c)
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The equations impose power balance at each bus in Eq. (5a), model the Ohm’s
law in Eq. (5b), and define branch power flows in Eq. (5c). Note that Si0 := 0
and li0 := 0 when bus j = 0 is the root bus, and when bus j is a leaf node of
G, all Sjk = 0 in Eq. (5a). The quantity zijlij is the loss on line (i, j), and hence
Sij − zijlij is the receiving-end complex power at bus j from bus i.

With the definition of v and l, Eqs. (5a), (5b) are both linear in variables.
However, the DistFlow equations are still difficult to solve due to the nonconvex
quadratic equality (5c). To deal with this nonconvexity, we adopt the recently
developed second-order cone programming (SOCP) relaxation. Note that by
relaxing the quadratic equality into inequality, that is,

vjljk ≥ |Sjk|2 ←→
∥∥∥∥∥∥

2Pjk

2Qjk

vj − ljk

∥∥∥∥∥∥
2

≤ vj + ljk, j → k ∈ E

the nonconvex constraint (5c) is relaxed into a second-order cone. Specifically,
we have the relaxed convex DistFlow equations:∑

k:(j,k)∈E

Sjk = Sij − zijlij + sj, j ∈ N (6a)

vj − vk = 2Re(zH
jkSjk) − |zjk|2ljk, j → k ∈ E (6b)

vjljk ≥ |Sjk|2, j → k ∈ E (6c)

When we solve an OPF problem that satisfies Eq. (5), an alternative is to
look at its relaxation with Eq. (6) replacing Eq. (5). If an optimal solution to
the relaxation attains equality in Eq. (6c), then the solution is also feasible,
and therefore optimal, for the original OPF problem. In this case, we say the
SOCP relaxation is exact. Sufficient conditions are known that guarantee the
exactness of the SOCP relaxation; see Refs. [44, 45] for a comprehensive
tutorial and references therein. Even when these conditions are not satisfied, the
SOCP relaxation for practical radial networks is still often exact, as confirmed
also by our simulations in Section 5. Therefore, Eq. (6) is a computationally
tractable power flow model for radial networks by assuming the underlying
SOCP relaxation is exact.

The complex notation of Eq. (6) is only a shorthand for a set of real equations
in the real vector variables (s, v, l, S) := (p, q, v, l, P, Q) := (pj, qj, vj, ljk, Pjk, Qjk,
j, k ∈ N, (j, k) ∈ E).

2.1.4 Operational constraints
The operation of the microgrid must meet certain specifications. The voltage
magnitudes must be maintained within stable regions:

Vj ≤ |Vj| ≤ Vj or vj ≤ vj ≤ vj, j ∈ N (7a)
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where Vj, vj and Vj, vj are given lower and upper bounds on the (squared)
voltage magnitude at bus j, respectively. The distributed real and reactive
generations must satisfy

pg
j

≤ pg
j ≤ pg

j , j ∈ N (7b)

qg
j

≤ qg
j ≤ qg

j , j ∈ N (7c)

where pg
j
, pg

j and qg
j
, qg

j are given lower and upper bounds on the real and reactive

power generations at bus j, respectively. The thermal limit of line (j, k) must be
satisfied:

Pjk ≤ Pjk, or |Ijk| ≤ Ijk, or |Sjk| ≤ Sjk, j → k ∈ E (7d)

where Pjk, Ijk, and Sjk denote different representations of the thermal limit of
line (j, k).

The model is quite general. If a quantity is known and fixed, then we set both
its upper and lower bounds to the given quantity, for example, the voltage of the
substation bus. If there is no distributed generation at bus j, then pg

j = pg
j

=
qg

j = qg
j

= 0.

2.2 Battery swapping scheduling

Let Nw := {1, 2, . . . , Nw} ⊆ N denote the set of buses that supply electricity
to stations, whose locations are fixed and known. For simplicity, assume there
is only one station (or an ensemble of multiple stations) connected to each bus
j ∈ Nw and we use j to index both the bus and the station. The batteries at each
station are either charging at the constant rated power r or already fully charged
and ready for swapping. Denote the total numbers of batteries and fully charged
batteries at station j at the beginning of the current control interval by Mj and mj,
respectively. Note that Mj is always fixed while mj is observed in each interval.

Let A := {1, 2, . . . , A} denote the set of EVs in the service area that
require battery swapping in the current interval. Denote their states of charge
as (ca, a ∈ A). Let uaj represent the assignment:

uaj =
{

1, if station j is assigned to EV a

0, otherwise

and let u := (uaj, a ∈ A, j ∈ Nw) denote the vector of assignments.
The assignments u satisfy the following conditions:∑

j∈Nw

uaj = 1, a ∈ A (8a)

∑
a∈A

uaj ≤ mj, j ∈ Nw (8b)
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that is, exactly one station is assigned to every EV and every assigned station
has enough fully charged batteries.

The system knows the current location of every EV a and therefore can
calculate the distance daj from its current location to the assigned station j, for
example, by resorting to a routing application (like Google Maps). In the electric
taxi case, if EV a is not currently carrying passengers and can go to swap its
battery immediately, then daj is the travel distance from its current location to
station j. If EV a must first complete its current passenger run before going to
station j, then daj is the travel distance from its current location to the destination
of its passengers and then to station j. The assigned station j must be within each
EV a’s driving range, that is,

uajdaj ≤ γaca, j ∈ Nw, a ∈ A (8c)

where ca is EV a’s current state of charge and γa is its driving range per unit
state of charge.

Denote the constraint set for u by

U := {u ∈ {0, 1}ANw : u satisfies Eq. (8)}
Assumption 1. U is nonempty.
Under Assumption 1, there are enough fully charged batteries in the system

for all EVs in A in the current interval. This can be enforced when choosing the
candidate set A of EVs for battery swapping, for example, for EVs that can reach
the same subset of stations, ranking them according to their states of charge,
scheduling as many EVs as possible in an increasing order, upper limited by the
number of fully charged batteries at those stations, and postponing remaining
EVs to the next interval.

Since every EV produces a depleted battery that needs to be charged at the
rated power r, we can express the net power injection sj = pj + iqj at bus j in
terms of the assignments u as

pj =
{

pg
j − pb

j − r
(
Mj − mj + ∑

a∈A uaj
)

, j ∈ Nw

pg
j − pb

j , j ∈ N \ Nw
(9a)

qj = qg
j − qb

j , j ∈ N (9b)

Let fj: R → R model the generation cost at bus j, for example, for
a distributed gas generator. We assume all fjs are increasing and convex
functions, for example, quadratic functions [17–19]. Denote the power
flow variables by φ. Given the previous three network models, φ ∈
{(p, P, θ), (s, V , |V|, I), (s, v, l, S)}, and corresponds to the model used. We are
interested in the following optimization problem:

min
u,sg,φ

∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj (10)

s.t. Eq. (1) or (4) or Eqs. (6)–(9), u ∈ {0, 1}ANw
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where
∑

a∈A
∑

j∈Nw
uajdaj is the total travel distance of EVs and α > 0 is a

weight that makes electricity generation cost and travel distance comparable,
for example, the travel cost per unit of distance. The network model can be
properly chosen based on the topologies and parameterization of the microgrid.
Fixing any assignments u ∈ {0, 1}ANw , the problem (10) is a convex problem.

3 Centralized solution

The joint battery swapping and OPF problem (10) is generally difficult to
solve because the assignments u are discrete. Our centralized solution applies
generalized Benders decomposition to deal with the discrete variables in
Eq. (10). Benders decomposition was first proposed in [46] for problems where,
when a subset of the variables are fixed, the remaining subproblem is a linear
program. It is extended in [47] to problems where the remaining subproblem is
a convex program. We now apply it to solving Eq. (10).

Denote the continuous variables by x := (sg, φ) while the discrete variables
are u. Denote the objective function by

F(x, u) :=
∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj

Given any u, F(x, u) is convex in x since fjs are assumed to be strictly convex.
Denote the constraint set for x by

X := {x ∈ R(|N|+|φ|): x satisfies Eq. (7) and one of Eq. (1), (4) or (6)}
and the constraints (9) on (x, u) by G(x, u) = 0 while u ∈ U. Then the relaxation
(10) takes the standard form for generalized Benders decomposition:

min
x,u

F(x, u) (11)

s.t. G(x, u) = 0, x ∈ X, u ∈ U

where F: R(|N|+|φ|) × {0, 1}ANw → R is a scalar-valued function, and
G: R(|N|+|φ|) × {0, 1}ANw → R2|N| is a vector-valued constraint function. Fixing
any u ∈ U, Eq. (11) is a convex subproblem in x. We now apply generalized
Benders decomposition of [47] to Eq. (11).

Write Eq. (11) in the following equivalent form:

min
u

W(u) s.t. u ∈ U ∩ W (12a)

where, for a fixed value of u,

W(u) := min
x∈X

F(x, u)

s.t. G(x, u) = 0
(12b)
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and

W := {u : G(x, u) = 0 for some x ∈ X} (12c)

The problem (12b), called the slave problem, is convex and much easier to solve
than Eq. (11). The set W consists of all us for which Eq. (12b) is feasible and
hence U∩W is the projection of the feasible region of Eq. (11) onto the u-space.
The central idea of generalized Benders decomposition is to invoke the dual
representations of W(u) and W to derive the following equivalent problem to
Eq. (12) (see [47, Theorems 2.2 and 2.3]):

min
u∈U

sup
μ∈R2|N|

{
min
x∈X

{
F(x, u) + μTG(x, u)

}}

s.t. min
x∈X

{
λTG(x, u)

} = 0, ∀λ ∈ R2|N|

Note that we assume that Slater’s condition is always satisfied. Here λ and μ

are Lagrangian multiplier vectors for W and W(u), respectively. This problem is
equivalent to

min
u∈U,u0∈R

u0 (13)

s.t. u0 ≥ min
x∈X

{
F(x, u) + μTG(x, u)

}
, ∀μ ∈ R2|N|

min
x∈X

{
λTG(x, u)

} = 0, ∀λ ∈ R2|N|

In summary, the series of manipulations have transformed the relaxation (10)
into the master problem (13).

Since Eq. (13) has uncountably many constraints with all possible λs and
μs, it is neither practical nor necessary to enumerate all constraints in solving
Eq. (13). Generalized Benders decomposition starts by solving a relaxed version
of Eq. (13) that ignores all but a few constraints. If a solution to the relaxed
version of Eq. (13) satisfies all the ignored constraints, then it is an optimal
solution to Eq. (13) and the algorithm terminates. Otherwise, the solution
process of the relaxed version of Eq. (13) will identify one μ or λ for which
the corresponding constraint is violated. The violated constraint is then added
to the relaxed version of Eq. (13), and the cycle repeats.

Specifically, the generalized Benders decomposition algorithm for Eq. (10)
(or equivalently, Eq. 11) is as follows.

● Step 1. Pick any ū ∈ U∩W. Solve the dual problem of Eq. (12b) with u = ū
to obtain an optimal Lagrangian multiplier vector μ̄. Let nμ = 1, nλ = 0,
μ1 = μ̄, and UBD = W(ū), where nμ, nλ are counters for the two types
of constraints in Eq. (13), and UBD denotes an upper bound on the optimal
value of Eq. (11).
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● Step 2. Solve the current relaxed master problem:

min
u∈U,u0∈R

u0 (14)

s.t. u0 ≥ min
x∈X

{
F(x, u) + (

μi)T
G(x, u)

}
, i = 1, . . . , nμ

min
x∈X

{(
λi)T

G(x, u)
}

= 0, i = 1, . . . , nλ

Let (û, û0) be the optimal solution to Eq. (14). Clearly û0 is a lower
bound on the optimal value of Eq. (11) since the constraints in Eq. (13) are
relaxed to a smaller set of constraints in Eq. (14). Terminate the algorithm if
UBD − û0 ≤ ε, where ε > 0 is a sufficiently small threshold.

● Step 3. Solve the dual problem of Eq. (12b) with u = û. The solution falls
into the following two cases.

1. Step 3a. The dual problem of Eq. (12b) has a bounded solution μ̂, that
is, W(û) is feasible and finite. Let UBD = min{UBD, W(û)}. Terminate
the algorithm if UBD − û0 ≤ ε. Otherwise, increase nμ by 1 and let
μnμ = μ̂. Return to Step 2.

2. Step 3b. The dual problem of Eq. (12b) has an unbounded solution, that
is, W(û) is infeasible. Determine λ̂ through a feasibility check problem
and its dual [48]. Increase nλ by 1 and let λnλ = λ̂. Return to Step 2.

We make three remarks. First, the slave problem (12b) is convex and hence
can generally be solved efficiently. The relaxed master problem (14) involves
discrete variables and is generally nonconvex, but it is much simpler than the
original problem (11). Second, for our problem, Eq. (14) turns out to be a mixed-
integer linear program in essence because both F and G are separable functions
in (x, u) of the form

F(x, u) =: F1(x) + F2(u)

G(x, u) =: G1(x) + G2(u)

where F2 and G2 are both linear in u. Indeed the constraints in Eq. (14) are

u0 − F2(u) − (
μi)T

G2(u) ≥ min
x∈X

{
F1(x) + (

μi)T
G1(x)

}
, i = 1, . . . , nμ(

λi)T
G2(u) = − min

x∈X

(
λi)T

G1(x), i = 1, . . . , nλ

where the left-hand side is linear in u and the right-hand side is independent
of u. Hence, in each iteration, the algorithm solves Eq. (14), which is a
simplified mixed-integer linear program (always with only one continuous
auxiliary variable), and Eq. (12b), which is a convex program. Third, every time
Step 2 is entered, one additional constraint is added to Eq. (14). This generally
makes Eq. (14) harder to compute, but also a better approximation of Eq. (13).
It is proved in [47, Theorem 2.4] that the algorithm will terminate in finite steps
since U is discrete and finite.
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4 Distributed solutions

4.1 Relaxations

The joint battery swapping and OPF problem (10) is computationally difficult
since the assignment variables u are binary. To deal with this difficulty, we use
generalized Benders decomposition in Section 3. This approach could compute
an optimal solution in reasonable time but the computation is centralized and
is suitable only when a single organization, for example, the State Grid in
China, operates all of the microgrid, stations, and EVs. This section develops
distributed solutions that are suitable for systems where these three are operated
by separate entities that do not share their private information. To this end, we
relax the binary assignment variables u to real variables u ∈ [0, 1]ANw . The
constraints (8) are then replaced by

uaj = 0 if daj > γaca, j ∈ Nw, a ∈ A (15a)∑
j∈Nw

uaj = 1, a ∈ A (15b)

∑
a∈A

uaj ≤ mj, j ∈ Nw (15c)

and we change to solve the following relaxation of Eq. (10):

min
u,sg,φ

∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj (16)

s.t. Eq. (1) or (4) or (6), (7), (9), (15), u ∈ {0, 1}ANw

This problem has a convex objective and convex quadratic constraints. After an
optimal solution (x*, u*) to Eq. (16) is obtained, we discretize u*

aj into {0, 1},
for example, by setting for each EV a a single large u*

aj to 1 and the rest to 0

heuristically. An alternative is to randomize the station assignments using u* as
a probability distribution. Whichever method is employed, it should guarantee
the discretized station assignments are feasible. As we will show later, the
discretization is readily implementable and achieves binary station assignments
close to optimum.

4.2 Distributed solution via ADMM

The relaxation (16) decomposes naturally into two subproblems, one on station
assignments over u and the other on OPF over (sg, φ). The station assignment
subproblem will be solved by a station operator that operates the network of
stations. The OPF subproblem will be solved by a utility company. Our goal
is to design a distributed algorithm for them to solve jointly Eq. (16) without
sharing their private information.
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These two subproblems are coupled only in Eq. (9a) where the utility
company needs the charging load se

j = r
(
Mj − mj + ∑

a∈A uaj
)

of station j
in order to compute the net real power injection pj. This quantity depends on
the total number of EVs that each station j is assigned to and is computed by
the station operator. Their computation can be decoupled by introducing an
auxiliary variable wj at each bus (station) j that represents the utility company’s
estimate of the quantity r

(
Mj − mj + ∑

a∈A uaj
)
, and requiring that they be

equal at optimality.
Specifically, recall the station assignment variables u, and denote the power

flow variables by x := (w, sg, φ) where w := (
r
(
Mj − mj + ∑

a∈A uaj
)

, j ∈ Nw
)
.

Separate the objective function by defining

f (x) :=
∑
j∈N

fj(p
g
j )

g(u) := α
∑
a∈A

∑
j∈Nw

dajuaj

Replace the coupling constraints (9) by constraints local to bus j:

pj =
{

pg
j − pb

j − wj, j ∈ Nw

pg
j − pb

j , j ∈ N/Nw
(17a)

qj = qg
j − qb

j , j ∈ N (17b)

Denote the local constraint set for x by

X :=
{

x ∈ R(|Nw|+|N|+|φ|) : x satisfies Eqs. (7), (17) and one of Eq. (1), (4)

or (6)
}

Denote the local constraint set for u by

U :=
{

u ∈ RANw : u satisfies Eq. (15)
}

To simplify the notation, define uj := ∑
a∈A uaj for j ∈ Nw. Then the relaxation

(16) is equivalent to

min
x,u

f (x) + g(u) (18a)

s.t. x ∈ X, u ∈ U (18b)

wj = r
(
Mj − mj + uj

)
, j ∈ Nw (18c)

We now apply ADMM to Eq. (18). Let λ := (λj, j ∈ Nw) be the Lagrange
multiplier vector corresponding to the current coupling constraint (18c), and
define the augmented Lagrangian:

Lρ(x, u, λ) := f (x) + g(u) + hρ(w, u, λ) (19a)
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where hρ depends on (x, u) only through (wj, uj, j ∈ Nw):

hρ(w, u, λ) :=
∑
j∈Nw

λj[wj − r
(
Mj − mj + uj

)]+ ρ

2

∑
j∈Nw

[wj − r
(
Mj − mj + uj

)]2

(19b)

and ρ is the step size for dual variable λ updates. The standard ADMM
procedure is iteratively and sequentially to update (x, u, λ): for n = 0, 1, . . .,

x(n + 1) := arg min
x∈X

f (x) + hρ(w, u(n), λ(n)) (20a)

u(n + 1) := arg min
u∈U

g(u) + hρ(w(n + 1), u, λ(n)) (20b)

λj(n + 1) := λj(n) + ρ[wj(n + 1) − r(Mj − mj + uj(n + 1))], j ∈ Nw

(20c)

Remark 1.

1. The x-update (20a) is carried out by the utility company and involves
minimizing a convex objective with convex quadratic constraints. The (u, λ)-
updates (20b), (20c) are carried out by the station operator and the u-update
minimizes a convex quadratic objective with linear constraints. Both can be
efficiently solved.

2. The x-update by the utility company in iteration n + 1 needs (u(n), λ(n))

from the station operator. From Eq. (19b), the station operator does not need
to communicate the detailed assignments u(n) = (uaj(n), a ∈ A, j ∈ Nw) to
the utility company, but only the charging load se

j = r(Mj − mj + uj(n)) of
each station j.

3. The (u, λ)-updates by the station operator in iteration n + 1 need the utility
company’s estimate w(n + 1) of (r(Mj − mj + uj(n + 1)), j ∈ Nw).

4. The reason why the x-update by the utility company needs (uj(n), j ∈ Nw)

and the u-update by the station operator needs w(n + 1) lies in the
(quadratic) regularization term in hρ . This becomes unnecessary for the dual
decomposition approach in Section 4.3 without the regularization term.

The communication structure is illustrated in Fig. 2. In particular, private
information of the utility company, such as network parameters (zjk, (j, k) ∈ E),
network states (sg(n), φ(n)), cost functions f , and operational constraints, as
well as private information of the station operator, such as the total numbers of
batteries (Mj, j ∈ Nw), the numbers of available fully charged batteries (mj, j ∈
Nw), how many EVs or where they are or their states of charge, and the detailed
assignments u(n), does not need to be communicated.

When the cost functions fj are closed, proper, and convex, and Lρ(x, u, λ)

has a saddle point, the ADMM iteration (20) converges in that, for any j ∈
Nw, the mismatch |wj(n) − r(Mj − mj + uj(n))| → 0 and the objective
function f (x(n)) + g(u(n)) converges to its minimum value [49]. This does
not automatically guarantee that (x(n), u(n)) converges to an optimal solution
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Utility company:

updates            

Station operator:
updates

Fig. 2 Communication between utility company and station operator.

to Eq. (16). In theory, ADMM may converge and circulate around the set of
optimal solutions, but never reach one. In practice, a solution within a given
error tolerance is acceptable. If (x(n), u(n)) indeed converges to a primal optimal
solution (x*, u*), u* may generally not be binary. We can use a heuristic to
derive binary station assignments from u*, as mentioned earlier. Fortunately,
the following result shows that the number of EVs with nonbinary assignments
is bounded and small in u*. See Appendix for its proof.

Theorem 1. It is always possible to find an optimal solution (x*, u*) to the
relaxation (16) in which the number of EVs a with u*

aj < 1 for any j ∈ Nw is at
most Nw(Nw − 1)/2.

In practice, the number Nw of stations is much smaller than the number
A of EVs that request battery swapping, and hence the number of nonbinary
assignments that need to be discretized will be small. Simulations in Section 5
further suggest that the discretized assignments are close to optimum.

4.3 Distributed solution via dual decomposition

The ADMM-based solution assumes the station operator directly controls the
station assignments to all EVs. This requires that the station operator know
the locations (daj), states of charge (ca), and performance (γa) of EVs. Moreover,
the charging load se

j = r(Mj − mj + uj(n)) of each station j needs to be
provided to the utility company. We now present another solution based on
dual decomposition that is more suitable in situations where it is undesirable
or inconvenient to share private information between the utility company, the
station operator, and EVs.

In the original relaxation (16), the update of the net power injections pj

in Eq. (9) by the utility company involves uj which is updated by the station
operator. These two computations are decoupled in the ADMM-based solution
by introducing an auxiliary variable wj for each j ∈ Nw at the utility company
and relaxing the constraint wj = r(Mj − mj + uj). In addition, the station
assignments u must satisfy uj ≤ mj in Eq. (15c). This is enforced in the
ADMM-based solution by the station operator that computes u for all EVs. To
distribute fully the computation to individual EVs, we dualize uj ≤ mj as well.
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Let λ := (λj, j ∈ Nw) and μ := (μj ≥ 0, j ∈ Nw) be the Lagrange multiplier
vectors for the constraints wj = r(Mj−mj+uj) and uj ≤ mj, j ∈ Nw, respectively.
Intuitively, w and λ decouple the computation of the utility company and that
of individual EVs through coordination with the station operator. Additionally,
μ decouples and coordinates all EVs’ decisions so that EVs do not need direct
communication among themselves to ensure that their decisions uaj collectively
satisfy uj ≤ mj.

Consider the Lagrangian of Eq. (18) with these two sets of constraints
relaxed:

L(x, u, λ, μ) := f (x)+g(u)+
∑
j∈Nw

λj(wj−r(Mj−mj+uj))+
∑
j∈Nw

μj(uj−mj) (21)

and the dual problem of Eq. (18):

max
λ,μ≥0

D(λ, μ) := min
x∈X,u∈Û

L(x, u, λ, μ)

where the constraint set Û on u is

Û :=
{

u ∈ RANw : u satisfies Eqs. (15a), (15b)
}

Let ua := (uaj, j ∈ Nw) denote the vector of EV as decision on which station to
swap its battery. Then the dual problem is separable in power flow variables x
as well as individual EVs’ decisions ua:

D(λ, μ) = V(λ) +
∑
a∈A

Ua(λ, μ) (22a)

where the problem V(λ) solved by the utility company is

V(λ) := min
x∈X

⎛
⎝f (x) +

∑
j∈Nw

λjwj

⎞
⎠ (22b)

and the problem Ua(λ) solved by each individual EV a is

Ua(λ, μ) := min
ua∈Ûa

∑
j∈Nw

(
αdaj − rλj + μj

)
uaj (22c)

where the constraint set Ûa on ua is

Ûa :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ua ∈ RNw :

uaj ∈ [0, 1] , j ∈ Nw

uaj = 0 if daj > γaca, j ∈ Nw∑
j∈Nw

uaj = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Note that Eq. (22c) has closed-form solutions. For instance, if there exists a
unique optimal solution to Ua(λ, μ), that is, for any EV a there is a unique
j*a(λ, μ) defined as

j*a(λ, μ) := arg min
j: daj≤γaca

{αdaj − rλj + μj}
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then the optimal solution can be uniquely determined as

u*
aj(λ, μ) :=

{
1, if j = j*a(λ, μ)

0, if j �= j*a(λ, μ)

that is, it simply chooses the unique station j*a within EV as driving range that
has the minimum cost αdaj − rλj + μj.

From Eq. (21), the standard dual algorithm for solving Eq. (18) is, for j ∈
Nw,

λj(n + 1) := λj(n) + ρ1(n)[wj(n) − r(Mj − mj + uj(n))] (23a)

μj(n + 1) := max{μj(n) + ρ2(n)(uj(n) − mj), 0 } (23b)

where ρ1(n), ρ2(n) > 0 are diminishing step sizes and, from Eq. (22), we have

x(n) := arg min
x∈X

⎛
⎝f (x) +

∑
j∈Nw

λj(n)wj

⎞
⎠ (23c)

and, for a ∈ A,

ua(n) := arg min
ua∈Ûa

∑
j∈Nw

(
αdaj − rλj(n) + μj(n)

)
uaj (23d)

Remark 2.

1. The x-update (23c) is carried out by the utility company and involves
minimizing a convex objective with convex quadratic constraints. The only
information that is nonlocal to the utility company for its x-update is one of
the dual variables λ(n) computed by the station operator.

2. The ua-update (23d) is carried out by each individual EV. Each EV requires
both the dual variables (λ(n), μ(n)) from the station operator for its update.

3. The dual updates (23a), (23b) are carried out by the station operator
which uses a (sub)gradient ascent algorithm to solve the dual problem
maxλ,μ≥0 D(λ, μ). It requires w(n) from the utility company and individual
decisions ua(n) from EVs a.

The communication structure is illustrated in Fig. 3. In particular, EVs
are completely decoupled from the utility company and among themselves.
Unlike the ADMM-based solution, the station operator knows only the battery
swapping decisions of EVs, but not their private information such as locations
(daj), states of charge (ca), or performance (γa).

Since the relaxation (16) is convex, strong duality holds if Slater’s
condition is satisfied. Then, when the above (sub)gradient algorithm converges
to a dual optimal solution (λ*, μ*), any primal optimal point is also a
solution to the corresponding x-update (23c) and ua-update (23d) [50, 51].
Suppose (x(n), ua(n), a ∈ A) indeed converges to a primal optimal solution
(x*, u*

a, a ∈ A), then typically (u*
a, a ∈ A) is not binary. However, the bound in

Theorem 1 still holds that guarantees easy discretization and suggests that the
final discretized stations assignments are close to optimum.
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Utility company:

updates            

Station operator:

updates                         

EV 1:
updates             

EV A:

updates 

Broadcasts to EVs

•   •   •   •

Fig. 3 Communication between utility company, station operator, and EVs.

Remark 3. The two solutions have their own advantages and can be adapted
to different application scenarios. The ADMM-based solution requires a station
operator that is trustworthy and can access EVs’ private information. Since
the station operator optimizes station assignments on behalf of all EVs, no
computation is required on each EV, and meanwhile communication is only
required between the station operator and the utility company. In contrast, the
solution based on dual decomposition does not require sharing EVs’ private
information with the station operator. It does, however, necessitate computation
capabilities on all EVs. In addition, communication is needed both between the
station operator and the utility company and between the station operator and
each EV.

5 Numerical results

5.1 Setup

We now evaluate the proposed algorithms through simulations using a 56-bus
test system from SCE with a radial structure. Therefore, we will adopt the
DistFlow equations to model power flows on the network. Similar performance
can be anticipated on the other two models and is therefore skipped here. A
maximum voltage deviation of 0.05 p.u. is allowed and all line capacities are set
to infinity. More details about the test system can be found in [52, Fig. 2 and
Table I]. We add four distributed generators and four stations at different buses,
with parameters given in Table 1A. Note that the units of the real power, reactive
power, cost, distance, and weight are MW, Mvar, $, km, and $/km, respectively.
The four stations are assumed to be uniformly located in a 4 km × 4 km square
area supplied by the test system, as shown in Table 1B. Two cases with different
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TABLE 1 Setup.

(A) Distributed generator

Bus pg
j pg

j qg
j qg

j Cost function

1 4 0 2 −2 0.3pg2 + 30pg

4 2.5 0 1.5 −1.5 0.1pg2 + 20pg

26 2.5 0 1.5 −1.5 0.1pg2 + 20pg

34 2.5 0 1.5 −1.5 0.1pg2 + 20pg

(B) Station

Bus Location Mj mj

5 (1, 1) mj (i) A; (ii) A/2

16 (3, 1) mj (i) A; (ii) A/10

31 (1, 3) mj (i) A; (ii) A/4

43 (3, 3) mj (i) A; (ii) A/4

mjs will be tested for illustration purposes. Suppose in a certain control interval,
there are A EVs that request battery swapping (A will vary in our case studies).
Their current locations are generated in a uniformly random manner within the
square area while their destinations are ignored. We use the Euclidean distance
for daj. We assume all EVs have sufficient battery energy to reach any of the
four stations, which means that Eq. (8c) is readily satisfied. The extension to the
general case where each EV has a limited driving range and can only reach some
of the stations is straightforward. The constant charging rate is r = 0.01 MW
[53] at all stations. We set the weight α to be 0.02 $/km first [54]. For each case,
we conduct 10 simulation runs with random EV locations. All numerical tests
are run on a laptop with Intel Core i7-3632QM CPU@2.20 GHz, 8 GB RAM,
and 64-bit Windows 10 OS.

5.2 Centralized solution

We first fix Mj = mj = A, j ∈ Nw, which means that in each station, batteries
are all fully charged and sufficient to serve all EVs. The centralized solution is
applied to two test cases with different numbers of EVs, and scalability analysis
follows.

5.2.1 Nearest-station policy
Without optimization, the default policy is that all EVs head for their nearest
stations to swap batteries. This is shown in Figs. 4A and 5A for two specific
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Fig. 4 #EVs = 100. (A) Nearest-station policy and (B) optimal assignments.
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Fig. 5 #EVs = 300. (A) Nearest-station policy and (B) optimal assignments.

cases with 100 and 300 EVs, respectively. In practice this myopic policy can
lead to a shortage in fully charged batteries at a station if many EVs cluster
around that station due to correlations in traffic patterns. Moreover, it can
cause voltage instability: the voltage magnitudes of some buses drop below
the threshold 0.95 p.u. in the 300-EV case, as shown in Table 2, where the last
column exhibits the resulting charging load at each bus.

5.2.2 Optimal assignments
Figs. 4B and 5B show the optimal assignments computed using the centralized
solution for the previous two cases, respectively. The nearest stations are not as-
signed to some of the EVs (highlighted with thicker circles in the figures) when
grid operational constraints such as voltage stability are taken into account. The
number of such EVs is larger in the 300-EV case than that in the 100-EV case.
The tradeoff between the EVs’ travel distance and electricity generation cost is
optimized. The OPF results of the 300-EV case are listed in Table 3 (compare
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TABLE 2 Partial bus data under
nearest-station policy (300 EVs).

Bus |Vj| (p.u.) pg
j qg

j r
∑

a∈A uaj

1 1.050 0.571 0.000 /

4 1.047 2.500 0.663 /

5 1.031 / / 0.660

16 0.941 / / 0.700

18 0.948 / / /

19 0.944 / / /

26 1.050 2.500 0.410 /

31 1.020 / / 0.830

34 1.044 2.500 1.500 /

43 1.015 / / 0.810

TABLE 3 Partial bus data under optimal
assignments (300 EVs).

Bus |Vj| (p.u.) pg
j qg

j r
∑

a∈A uaj

1 1.050 0.520 0.000 /

4 1.048 2.500 0.590 /

5 1.025 / / 0.990

15 0.981 / / /

16 0.974 / / 0.300

17 0.980 / / /

18 0.973 / / /

19 0.969 / / /

26 1.050 2.500 0.439 /

31 1.019 / / 0.840

34 1.044 2.500 1.500 /

43 1.013 / / 0.870

with Table 2). As we can see from Table 3, the outputs (2.500 MW) of the
distributed generators at buses 4, 26, and 34 have reached their full capacity
(2.5 MW) while the injection (0.520 MW) at bus 1 (the substation bus) is far
from its capacity (4 MW). This is consistent with our intuition that distributed
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generations that are closer to users and potentially cheaper than power from
the transmission grid are favored in OPF. Under the optimal assignments, the
deviations of voltages from their nominal value are all less than 5%.

5.2.3 Optimality of generalized Benders decomposition
The upper and lower bounds on the optimal objective values for the previous
two cases are plotted in Fig. 6 as the algorithm iterates between the master and
slave problems. More iterations are required for larger-scale cases where the
algorithm usually struggles longer to obtain an initial feasible solution. Once a
feasible solution is found, the gap between the upper and lower bounds starts
to shrink rapidly and the convergence to optimality is achieved within a few
iterations.

5.2.4 Exactness of SOCP relaxation
We check whether the solution computed by generalized Benders decomposi-
tion attains equality in Eq. (6c), that is, whether the solution satisfies power flow
equations and is implementable. Our result confirms the exactness of the SOCP
relaxation for most cases we have tested on, including the previous two. Due to
space limit, only partial data of the 300-EV case are shown in Table 4.

In summary, SOCP relaxation and generalized Benders decomposition seem
to be effective in solving exactly our joint battery swapping and OPF problem
(10).

5.2.5 Computational effort
To demonstrate the potential of the centralized solution for practical application,
we check its required computational effort by counting its computation time for
different numbers of EVs and stations, since the number of discrete variables
in the optimization problem is the computational bottleneck. We use Gurobi to
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Fig. 6 Convergence of generalized Benders decomposition. (A) #EVs = 100. (B) #EVs = 300.
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TABLE 4 Exactness of SOCP relaxation
(partial results for 300 EVs).

Bus

vjljk |Sjk|2 ResidualFrom To

1 2 0.271 0.271 0.000

2 3 0.006 0.006 0.000

2 4 0.202 0.202 0.000

4 5 1.369 1.369 0.000

4 6 0.005 0.005 0.000

4 7 1.952 1.952 0.000

7 8 1.691 1.691 0.000

8 9 0.009 0.009 0.000

8 10 1.269 1.269 0.000

10 11 1.092 1.092 0.000
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Fig. 7 Average computation time as a function of #EVs.

solve the master problem (integer programming) and SDPT3 to solve the slave
problem (convex programming) on the MATLAB R2012b platform.

On the one hand, Fig. 7 shows the average computation time required by
the centralized solution to find a global optimum for different numbers of EVs,
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given the four fixed stations (note that each data point in Figs. 7–11 is an average
over 10 simulation runs with random EV locations). On the other hand, we fix
the number of EVs at 100 and scale up stations that are located at different
randomly picked buses. Fig. 8 shows the average computation time required
grows accordingly, but its sensitivity to the number of stations is moderate as
the iterations that struggle for an initial feasible solution (recall Fig. 6) do not
increase significantly when the number of EVs is fixed. Therefore, overall the
required computational effort is desirable.

5.2.6 Benefit
Fig. 9 displays the average relative reduction in the objective value with
different αs using optimal assignments, compared with the nearest-station
policy. Scheduling flexibility is enhanced with more EVs, thus improving the
savings. In addition, α expresses the system’s relative emphasis on the two
objective components. Clearly the smaller the weight α on EVs’ travel distance
is, the more benefit optimal assignments provide over the nearest-station policy.
However, Fig. 9 also suggests that the improvement is small, that is, the nearest-
station policy is good enough if it is implementable.

The nearest-station policy is sometimes infeasible either when there are more
EVs nearest to a station than fully charged batteries at that station or when
some operational constraints of the microgrid are violated. In our case studies,
infeasibility is mainly due to some voltages dropping below the allowable lower
limit. Define a metric voltage drop violation as VDV := ∑

j∈N max{√vj −√
vj, 0} to quantify the degree of voltage violation. Fig. 10 shows the average
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Fig. 8 Average computation time as a function of #stations.
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VDV for the number of EVs ranging from 240 to 400 under the nearest-station
policy. The voltage violation becomes more severe when the number of EVs
increases.

It is also interesting to look at cases where there are more EVs nearest to a
station than fully charged batteries that station can provide, which, as far as we
know, are common in practice. We reset M1 = m1 = M2 = m2 = 1

2 A and M3 =
m3 = M4 = m4 = 1

8 A to simulate these situations. Hence the total number of
fully charged batteries in the system is 5

4 A. Fig. 11A shows, for each station, the
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Fig. 11 (A) Average ratio of the number of forthcoming EVs to that of fully charged batteries. (B)
Average number of unserved EVs under nearest-station policy.

average ratio of the number of EVs which go to the station for battery swapping
to that of fully charged batteries at the station, under both the nearest-station
policy and optimal assignments. In total, 99.40% of station 1’s batteries, 50.60%
of station 2’s batteries, and all the batteries at stations 3 and 4 are used under the
optimal assignments, thus they have collectively served all A EVs. Under the
nearest-station policy, however, only 51.55% and 48.89% of stations 1 and 2’s
batteries, respectively (i.e., a total of around 1

2 A batteries) are used for swapping.
At either of stations 3 and 4, the number of EVs is approximately double that of
available fully charged batteries (192.61% and 205.62%, respectively). Fig. 11B
shows the average number of unserved EVs under the nearest-station policy as a
function of the total number of EVs. On average, approximately one in four EVs
cannot be served at their nearest stations, mainly due to congestion at stations
3 and 4, while available fully charged batteries at stations 1 and 2 are not fully
utilized.

5.3 Distributed solutions

We first fix the number of EVs that request battery swapping as A = 400, and
test the two cases with different mjs, listed in Table 1B, using our distributed
solutions, followed by scalability analysis.

5.3.1 Convergence
The convergence of ADMM in case (i) is demonstrated in Fig. 12. Fig. 12A and
B shows, respectively, that the Lagrange multiplier vector λ and the residual
of the relaxed equality constraint (18c) converge rapidly. Case (ii) behaves
similarly. Each iteration that computes the three steps of Eq. (20) takes on
average 0.477 s by Gurobi. For the dual decomposition algorithm, Fig. 13A
and B shows the convergence of its two Lagrange multiplier vectors λ and
μ, respectively, in case (ii). λ maintains the consensus between the utility
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company and EVs at convergence, and μ guarantees (15c) is satisfied when
it converges. Dual decomposition usually takes more iterations to converge
due to the additionally required coordination among all EVs. For case (i),
results are similar except that μ remains 0 during computation as Eq. (15c)
is always satisfied. Each iteration of the dual decomposition algorithm involves
the centralized update of Eqs. (23a), (23b) and the parallelized computation of
Eqs. (23c), (23d). Each iteration takes on average 0.212 s by Gurobi.

5.3.2 Suboptimality (comparison with centralized solution)
In case (i), both algorithms obtain a solution in which the station assignments to
two EVs, highlighted with thicker circles in Fig. 14A, are nonbinary: u242 =
[0.707 0.293 0.000 0.000] and u367 = [0.230 0.000 0.770 0.000]. This is
consistent with Theorem 1. If we simply round u243 and u367 to binary values,
the resulting solution turns out to coincide with a globally optimal solution
computed using the centralized solution.
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Fig. 15 Average computation time of ADMM. (A) As a function of #EVs. (B) As a function of
#stations.

In case (ii), we reduce available fully charged batteries at each station to
activate Eq. (15c). Fig. 14B shows the solution achieved by both algorithms.
The solution turns out to be globally optimal for the original problem (10);
in particular, all station assignments are binary. EVs, to which the station
assignments are altered due to the bound imposed on battery availability of each
station, are highlighted with thicker circles in Fig. 14B. The intuition is that an
active (Eq. 15c) can sometimes help eliminate nonbinary assignments to EVs.
This is often the case in practice where battery availability is uneven across
stations.

5.3.3 Exactness of SOCP relaxation
In most cases that we have simulated, including cases reported here, the SOCP
relaxation is exact, that is, the solutions computed by the two distributed
algorithms attain equality in Eq. (6c) and therefore satisfy power flow equations.
Partial data for case (ii) are listed in Table 5.
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TABLE 5 Exactness of SOCP relaxation
(partial results for case (ii)).

Bus

vjljk |Sjk|2 ResidualFrom To

1 2 2.582 2.582 0.000

2 3 0.006 0.006 0.000

2 4 2.336 2.336 0.000

4 5 3.413 3.413 0.000

4 6 0.005 0.005 0.000

4 7 2.276 2.276 0.000

7 8 1.984 1.984 0.000

8 9 0.009 0.009 0.000

8 10 1.518 1.518 0.000

10 11 1.318 1.318 0.000

5.3.4 Scalability
We follow the same principle earlier for the centralized solution to demonstrate
the scalability of the two distributed solutions, that is, we first augment the
number of EVs while the number of stations is fixed and then turn it the other
way round. The computation time that is shown in Figs. 15 and 16 is averaged
over 10 simulation runs with randomly generated cases. Approximately, the
computational effort of both solutions increases linearly as EVs (or stations)
scale up. Compared with the centralized solution, the required computation time
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Fig. 16 Average computation time of dual decomposition. (A) As a function of #EVs. (B) As a
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of the distributed solutions is less sensitive to the EV scale, which is intuitive, but
turns out to be more sensitive to the station scale. This results from the fact that
the consensus that the distributed solutions strive toward has to be achieved at
each station. Generally, more iterations are needed as more stations are involved.

6 Concluding remarks

6.1 Summary

We formulate an optimal scheduling problem for battery swapping in a micro-
grid that assigns to each EV a best station to swap its depleted battery based
on its current location and state of charge. The schedule aims to minimize a
weighted sum of EVs’ travel distance and electricity generation cost over both
station assignments and power flow variables, subject to EV range constraints,
grid operational constraints, and AC power flow equations. Three representative
linearization or convex relaxation methods are discussed for modeling the
power flows on the microgrid, based on which we then propose both centralized
and distributed solutions to handle the binary nature of station assignments. The
centralized solution is applicable to vertically integrated systems where global
information and controllability are available. The distributed solutions are more
suitable for systems where the distribution grid, stations, and EVs are operated
by separate entities that do not share their private information. They allow these
entities to make individual decisions but coordinate through privacy-preserving
information exchanges. Numerical case studies on the SCE 56-bus test system
validate our analysis and reveal some interesting results in potential practical
application.

6.2 Model limitations

First, Assumption 1 is imposed by choosing a proper candidate set A of EVs
when there is overwhelming demand of battery swapping, which significantly
eases the model complexity at the sacrifice of a little performance. It will
be interesting to model further the waiting cost of EVs when they cannot
be immediately served at stations. Second, optimizing charging rates across
intervals can be integrated to form a multiinterval scheduling problem if a good
estimate of future information is available. Then it is worth evaluating the value
of future information in improving the overall performance.

Appendix: Proof of Theorem 1

We refer to EV a as a critical EV if its station assignment satisfies uaj < 1 for
all j ∈ Nw. We first show the following lemma and then prove Theorem 1. Let
(u, y) := (u, sg, φ).
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Lemma 1. It is always possible to find an optimal solution (u*, y*) to the
relaxation (16) where no critical EVs share two stations, that is, there do not
exist a, b ∈ A and j, k ∈ Nw such that u*

aj, u*
ak, u*

bj, u*
bk > 0.

Proof. Fix any (u, y) that is feasible for Eq. (16). If uaj, uak, ubj, ubk > 0 for
some a, b ∈ A and j, k ∈ Nw, we will construct station assignments u′ that satisfy
the lemma such that (u′, y) is also feasible for Eq. (16) but has a lower or equal
objective value. This proves the lemma.

Let Ba := uaj+uak, Bb := ubj+ubk, Bj := uaj+ubj, and Bk := uak+ubk. The
interpretation of these quantities is that rBa and rBb are the charging loads of
EVs a and b, respectively, and rBj and rBk are their load distributions at stations
j and k, respectively. Clearly, Ba + Bb = Bj + Bk. Without loss of generality, we
can assume either case 1: Ba ≥ Bj ≥ Bk ≥ Bb or case 2: Bj ≥ Ba ≥ Bb ≥ Bk

holds. We now construct u′ assuming case 1 holds. The construction is similar
if case 2 holds instead.

We consider four disjoint subcases and construct u′ for each subcase:

1.1 EV a is closer to station j but farther away from station k than b (daj ≤
dbj, dbk ≤ dak): Let u′

aj = Bj, u′
ak = Bk−Bb, u′

bj = 0, u′
bk = Bb and the other

variables remain the same as in (u, y). This means that the assignments u′
send EV b to station k but not station j, and also increase the likelihood of
EV a going to station j while decreasing that to station k. Since

u′
aj + u′

ak = Bj + Bk − Bb = uaj + uak

u′
bj + u′

bk = Bb = ubj + ubk

u′
aj + u′

bj = Bj = uaj + ubj

u′
ak + u′

bk = Bk − Bb + Bb = uak + ubk

(u′, y) is feasible Eq. (16). Moreover,∑
c=a,b

∑
i=j,k

dciu
′
ci = dajBj + dak(Bk − Bb) + dbkBb

= daj(uaj + ubj) + dak(uak − ubj) + dbk(ubj + ubk)

≤
∑

c=a,b

∑
i=j,k

dciuci − ubj(dak − dbk)

≤
∑

c=a,b

∑
i=j,k

dciuci

where the first inequality uses daj ≤ dbj and the second inequality uses
dbk ≤ dak. Therefore, (u′, y) has a lower or equal objective value than (u, y).

1.2 EV b is closer to station j but farther away from station k than a (dbj ≤
daj, dak ≤ dbk): This case is symmetric to subcase 1.1.

1.3 EV a is closer than b to both stations (daj ≤ dbj, dak ≤ dbk): We have either
dbj − dbk ≤ daj − dak or dbj − dbk > daj − dak. In the former case, let
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u′
aj = Bj − Bb, u′

ak = Bk, u′
bj = Bb, u′

bk = 0. Then∑
c=a,b

∑
i=j,k

dciu
′
ci =

∑
c=a,b

∑
i=j,k

dciuci + (dak − dbk + dbj − daj)ubk

≤
∑

c=a,b

∑
i=j,k

dciuci

Similar to subcase 1.1, (u′, y) is feasible and has a lower or equal objective
value. In the latter case, let u′

aj = Bj, u′
ak = Bk − Bb, u′

bj = 0, u′
bk = Bb.

Then (u′, y) is feasible and has a lower objective value.
1.4 EV b is closer than a to both stations (dbj ≤ daj, dbk ≤ dak): This case is

symmetric to subcase 1.3.

This completes the proof of the lemma.
Proof. Fix an optimal solution (u*, y*) to the relaxation (16) that satisfies

Lemma 1. By definition, a critical EV splits its charging load between at least
two different stations. An upper bound on the number of critical EVs is therefore
the maximum number of critical EVs that we can assign the Nw stations to
without violating Lemma 1.

Consider the set C1 of critical EVs under the assignments u* that split their
charging loads between station i = 1 and (at least) another station j = 2, . . . , Nw.
Lemma 1 implies that there are at most Nw − 1 critical EVs in C1 since the
assignments u* are optimal. Consider next the set C2 of critical EVs not in C1
that split their charging loads between station i = 2 and (at least) another station
j = 3, . . . , Nw. There are at most Nw − 2 critical EVs in C2. Similarly there are
at most Nw − i critical EVs in the set Ci that are not in ∪i−1

k=1Ck that split their
charging loads between station i and (at least) another station j > i. Hence the
maximum number of such critical EVs is (Nw − 1) + (Nw − 2) + · · · + 1 =
1
2 Nw(Nw − 1). This completes the proof of Theorem 1.
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