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Abstract— This paper investigates the battery charging
schedule problem of a battery-swapping station for electric
buses (EB). An EB assignment policy is proposed such that
there is a one-to-one correlation between EBs and batteries.
By this means, the battery charging schedule problem aiming
to minimize the total cost of the battery-swapping station
is formulated as a constrained convex program with both
spatially and temporally coupled constraints. Based on dual
decomposition and our proposed EB assignment policy, the
battery charging schedule problem can be decomposed into a
series of local subproblems, which can be independently tackled.
Furthermore, a fast search method in combination with binary
search is put forward to deal with subproblems. Therefore, the
battery charging schedule problem can be solved efficiently in
a distributed manner. Numerical results confirm the validity of
our proposed approach.

I. INTRODUCTION

The conventional power system is under transformation
from a centralized design towards a decentralized one, evolv-
ing into an intelligent power system, known as the smart
grid [1], [2]. There are many pressing issues that push the
pace of such a transformation, e.g., the ever-increasing power
load, the aging infrastructures, the shortage of fossil fuels
and the emission of green house gases, etc. The smart grid,
in combination with communication technologies, has the
advantage of generation diversification and demand response
[3], [4], which makes the balance between power supply and
demand more stable.

Accompanied by the rapid advance of the smart grid,
electric vehicles (EV), characterized to be zero-emission, are
gradually penetrating into the car market. EVs like Tesla even
lead the forefront of the latest vehicular technology. With the
increase in the penetration of EVs, the corresponding charg-
ing load will bring great burden on the distribution grid [5].
Fortunately, batteries in EVs provide the flexibility of peak
clipping and valley filling. Under different circumstances,
EVs can function as either load (normal charging) or storage
(V2G).

As another form of EVs, EBs are faster to be put into
widespread use as they are usually under centralized control
of a battery-swapping station where all batteries are charged
to the full state-of-charge (SOC) and prepared to be swapped.
In addition, the arrival process of EBs is more periodical
compared with private EVs or electric taxies, which brings
much convenience to the management of battery charging.
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With the scale expansion in the immediate future, a battery-
swapping station is destined to be a tremendous load source.
Therefore, it is of great significance to coordinatively sched-
ule the charging of all batteries in a battery-swapping station
so as to relax the stress on the distribution grid. A lot
of literatures have studied the related issues on battery-
swapping stations [6]–[10]. In [6], a new business model
of a microgrid-based battery-swapping station is proposed.
Meanwhile, a new optimal dispatching strategy of a micro-
grid containing battery-swapping stations, wind generators,
photovoltaic systems, fuel cells, micro turbines and diesel
generators is given, considering battery and charger con-
straints. [7] proposes the use of the batteries in a battery-
swapping station as a countermeasure for surplus electricity
from PVs. [8] discusses the planning of the location and
sizing of a battery-swapping station, which has a great
impact on the popularisation of EVs and the security of
the distribution grid. Similarly, [9] describes a model for
identifying the optimal geographic locations for battery-
swapping stations and investigates how to best stage the
roll-out of battery-swapping stations in Australia over an
extended time period. Moreover, charging infrastructures are
also developing fast to support the construction of battery-
swapping stations, e.g., the functionality of a commercialized
fast charger for a lithium-ion electric vehicle propulsion
battery is presented in [10]. However, to the best of our
knowledge, there are few literatures researching the schedule
issues of battery-swapping stations for EBs.

In this paper, we focus on the battery charging schedule
of a battery-swapping station for EBs, which will bring
economic benefits to the battery-swapping station and mean-
while maintain the stability of the distribution grid. Assume
all batteries of the battery-swapping station are placed in
the charging boxes to be charged. Station operators have
to appropriately schedule the charging of all batteries in
order to prepare for the battery swap requests from EBs
and meanwhile achieve the total cost minimization, which
makes each battery temporally coupled. Moreover, since
there always exists a maximum threshold for the total load
of the battery-swapping station, all batteries are spatially
coupled. Therefore, the battery charging schedule problem
aiming to minimize the total cost of the battery-swapping
station is unable to be directly tackled.

The main contributions of this paper are summarized as
follows:

1) An EB assignment policy is proposed such that the
battery charging schedule problem can be formulated
as a constrained convex program.
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2) To deal with spatially coupled constraints, dual de-
composition is introduced, which, in combination with
our proposed EB assignment policy, can decompose
the battery charging schedule problem into separable
subproblems.

3) To solve each subproblem, a fast search method, which
is considered more efficient, is proposed instead of
standard convex optimization techniques.

The remainder of this paper is organized as follows. We
describe the system model in Sec. II. Dual decomposition is
introduced in Sec. III, followed by the fast search method we
put forward in Sec. IV. Then the distributed implementation
of our proposed approach is demonstrated in Sec. V. At last
the related numerical results are presented in Sec. VI, while
the conclusion is drawn in Sec. VII.

II. SYSTEM MODEL

A. Scenario

Consider a battery-swapping station which is located in
a bus transportation hub. All batteries are placed in the
charging boxes with three states: idle, charging or fully-
charged. A group of EBs are under management with either
their origin station or terminal station right in the bus
transportation hub. When in operation, the bus transportation
hub sends out EBs according to a time schedule to satisfy
passenger demand. Simultaneously, there are EBs coming
from other stations to the bus transportation hub. In order to
afford a trip, an EB must keep enough electricity energy in its
battery. When battery energy runs short, the EB has to move
to the battery-swapping station to swap its current battery for
a fully-charged one. Since every EB must be prepared for the
next trip upon its arrival at the bus transportation hub, some
EBs even have to immediately leave, e.g., circling buses, we
assume those EBs short of battery energy must be provided
with a fully-charged battery immediately when they arrive at
the battery-swapping station.

When a coming EB detects that its battery energy is not
sufficient for the next trip, it sends a signal to remotely notify
the battery-swapping station of its request for battery swap.
Through telecommunication, the battery-swapping station
can easily collect messages from all those EBs short of
battery energy. As every EB is always required to follow its
own time schedule and take a binding route, the arrival time
of EBs is predictable and can be estimated from historical
data. In this sense, we suppose the arrival process of EBs at
the battery-swapping station is a given deterministic process,
which is known by station operators in advance. Let D denote
the set of D EBs that are coming to the battery-swapping
station for battery swap. We consider a discrete time horizon
T := {1, 2, . . . , T} which covers all the arrivals of D EBs.
Set the duration of a time slot ∆t = 1 and thus it will be
omitted in the discussion below. Assume for simplicity that
the arrival of every EB removes a fully-charged battery and
returns a low-SOC battery which will take the place of the
removed battery in the charging box, thus the number of
batteries in the battery-swapping station keeps constant and

is assumed to be B. Typically, the low-SOC batteries EBs
return are proximately exhausted, thus we suppose that the
SOC of every returned battery is below a sufficiently small
threshold, such that the return of a high-SOC battery will not
happen. For ease of illustration, we assume that the SOC
upon arrival of every EB is given through communication
and estimation. All the B batteries compose the battery set
B. Note that the battery in charging box b is denoted as
battery b. Therefore, we do not refer to a certain battery, but
a series of batteries charged in charging box b in turn when
we talk about battery b.

To be more practical, all batteries and EBs are assumed to
be unified and identical. This makes sense in that standard-
ized infrastructures can bring much convenience to battery-
charging management. In order to keep the whole bus
transportation system running, all EBs’ demands of battery
swap ought to be fulfilled. In this paper, we suppose that
a fully-charged battery refers to a battery with its SOC no
lower than a threshold, i.e., πful.

B. EB assignment policy

Based on the assumption that the arrival process of EBs at
the battery-swapping station is a given deterministic process,
the sequence of EBs’ arrivals is known, thus we propose
an EB assignment policy to assign every EB to a certain
battery in the battery-swapping station, such that for every
EB, there is always a battery preparing to fulfill its battery
swap request. The key point of the EB assignment policy
lies in that the first coming EB is assigned to the battery
with the highest SOC, labeled as b = 1, the second coming
EB is assigned to the battery with the second highest SOC,
labeled as b = 2, and so on. After a cycle, the (B + 1)th

coming EB is again assigned to battery 1, and so are the rest
of the coming EBs. The same operations will be carried out
in the following cycles until no EB is expected to come.
For those EBs that arrive at the battery-swapping station
simultaneously, we rank them based on random sort. The
assignment ensures that there is a one-to-one correlation
between EBs and batteries.

C. Problem formulation

Denote the set of the EBs assigned to battery b as Db, then
D =

⊔
b∈B Db. For every EB d ∈ Db, its assigned battery

b has a charging cycle Tb,d from T sb,d to T eb,d, where T sb,d
denotes the first time slot after EB (d− 1) ∈ Db comes for
battery swap and T eb,d denotes the time slot when EB d comes
for battery swap. Correspondingly, the SOC of battery b at
any time slot t ∈ Tb,d is denoted as πtb,d.

Let ptb denote the normalized charging power of battery
b at time slot t with respect to the unified battery capacity,
which is the key control variable. Meanwhile, define p ,
[ptb]t∈T,b∈B, pb , [ptb]t∈T and pb,d , [ptb]t∈Tb,d

. For now, we
ignore the possibility of vehicle-to-grid (V2G) service, then
for each battery b ∈ B, its charging power is bounded as

0 ≤ ptb ≤ pmax, ∀t ∈ T,∀b ∈ B (1)

where pmax is the maximum charging power of a battery.
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In addition, considering the limits of transmission line ca-
pacity and transformer capacity, overloading must be averted.
For the battery-swapping station, its total load cannot exceed
a maximum threshold, otherwise damage will be caused to
electric equipment. Thus, a load constraint is introduced:∑

b∈B

ptb ≤ L, ∀t ∈ T (2)

where L is the maximum allowable load of the battery-
swapping station to ensure safety of the power system.

As far as the charging process of batteries is concerned, a
linear state equation is applied to depict the dynamic course
of a battery’s SOC:

πt+1
b,d = πtb,d + βbp

t
b, ∀d ∈ Db, ∀b ∈ B

where βb ∈ (0, 1] denotes the charging efficiency of battery
b. Then the final SOC of a battery when it is handed over to
the corresponding EB can be expressed as

πeb,d = πsb,d +
∑
t∈Tb,d

βbp
t
b, ∀d ∈ Db, ∀b ∈ B

where πeb,d and πsb,d represent the final SOC and the initial
SOC of battery b corresponding to EB d, respectively. Since
each battery must be able to sustain the running of an EB for
a sufficiently long distance to avoid frequent battery swaps,
only fully-charged batteries are permitted to be provided to
EBs, which requires πeb,d ≥ πful, i.e.,

πsb,d +
∑
t∈Tb,d

βbp
t
b ≥ πful, ∀d ∈ Db, ∀b ∈ B (3)

Based on the knowledge that charging a battery with dif-
ferent charging power causes varying degrees of degradation
effect to the battery, typically the larger the charging power,
the more serious the degradation effect caused, battery loss
is taken into consideration as an impact factor for battery
charging schedule to avert overlarge charging power. In
this paper, battery loss is quantified as a convex and non-
decreasing function of charging power, i.e., C (ptb). The
convexity of C (·) implies non-decreasing marginal battery
loss, i.e., C ′′ (·) ≥ 0, which will offset the economic benefit
brought by overlarge charging power.

Suppose the battery-swapping station purchases electricity
energy from the real-time market. Since expected real-time
prices can be estimated from historical data, we assume the
real-time prices are known in advance for simplicity. Let θt

denote the real-time price at time slot t. Therefore, the cost
of battery b at time slot t comprises of the charging expense
plus the resulting battery loss: F tb (ptb) = ptbθ

t + αC (ptb),
where α ≥ 0 is a weight.

The battery charging schedule problem for the battery-
swapping station is to control the charging power of all
batteries over all time slots, with the aim of minimizing the
total cost, meanwhile subject to (1), (2) and (3):

Primal problem:

min
p

∑
b∈B

∑
t∈T

F tb
(
ptb
)

(4)

s.t. (1) (2) (3)

III. DUAL DECOMPOSITION

Since (2) couples all batteries together, which makes
it unable to separately schedule each battery’s charging
behavior, dual decomposition is applied to decompose (4)
into a series of interim problems, each corresponding to a
single-battery charging schedule.

First of all, introduce the Lagrangian multiplier vector
λ , [λt]t∈T with λt ≥ 0 to relax (2), thereby forming the
Lagrangian for (4):

L (λ,p)

=
∑
b∈B

∑
t∈T

F tb
(
ptb
)

+
∑
t∈T

(∑
b∈B

ptb − L

)
λt

=
∑
b∈B

∑
t∈T

[
ptb
(
θt + λt

)
+ αC

(
ptb
)]
− Γ (λ)

where Γ (λ) ,
∑
t∈T

Lλt.

The corresponding dual function is given as

D (λ) = min
p
L (λ,p)

=
∑
b∈B

Sb (λ)− Γ (λ)
(5)

where Sb (λ) is an interim problem and can be further
decomposed as

Sb (λ) = min
pb

∑
t∈T

[
ptb
(
θt + λt

)
+ αC

(
ptb
)]

= min
pb

∑
d∈Db

∑
t∈Tb,d

[
ptb
(
θt + λt

)
+ αC

(
ptb
)]

=
∑
d∈Db

min
pb,d

∑
t∈Tb,d

[
ptb
(
θt + λt

)
+ αC

(
ptb
)]

=
∑
d∈Db

Rb,d (λb,d)

where λb,d , [λt]t∈Tb,d
and Rb,d (λb,d) is a local subprob-

lem corresponding to the schedule of charging battery b to
prepare for the arrival of EB d. Note that both

∑
b∈B

Sb (λb)

and
∑
d∈Db

Rb,d (λb,d) is separable since batteries attached to

one charging box are charged in sequence independently.
For ease of presentation, we drop the notations b and d,

thus every single subproblem R (λ) is given as

R (λ) , min
p

∑
t∈T

[
pt
(
θt + λt

)
+ αC

(
pt
)]

(6)

s.t. πs +
∑
t∈T

βpt ≥ πful

0 ≤ pt ≤ pmax, ∀t ∈ T

The dual problem is to maximize the dual function (5)
over the Lagrangian multiplier vector λ:

Dual problem:

max
λ

D (λ) (7)

s.t. λt ≥ 0, ∀t ∈ T

Note that we mainly focus on the occasions when the
primal problem (4) is feasible (An infeasible primal problem
means that its corresponding dual problem has an unbounded
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optimal solution). Hence, according to dual theory, the max-
imum value of the dual problem (7) gives a lower bound on
the range of the primal problem (4) and coincides with its
minimum value since there is no duality gap, considering the
concavity of the primal problem (4). Therefore, as long as
λ∗, the optimal solution to the dual problem (7), is given,
we can obtain p∗, the optimal solution to the primal problem
(4), through solving every local subproblem (6).

Due to strong duality, solving the primal problem (4) is
equivalent to solving the dual problem (7). Hence, we focus
on the latter. On account of the differentiability of the dual
function (5), the optimal solution to the dual problem (7) can
be obtained iteratively by means of gradient descent method.
The Lagrangian multiplier vector λ is updated in the gradient
direction of the dual function (5):

λtk+1 =

[
λtk + ν

∂D (λk)

∂λtk

]+
, ∀t ∈ T (8)

where ν > 0 stands for the step size which modulates
the convergence rate and k ∈ N+ denotes the iteration
index. Since the concavity of the dual function (5) always
holds, convergence towards the optimal solution will be
guaranteed if a sufficiently small step size is chosen, such
that the gradient of the dual function (5) satisfies the Lipchitz
continuity condition.

IV. FAST SEARCH METHOD TO SUBPROBLEM

The subproblem (6) is a constrained convex program
with only temporally coupled constraints, which can be
tackled by means of some standard convex optimization tech-
niques, e.g., interior point methods. However, conventional
approaches suffer the same weakness of high computational
complexity. In order to accelerate computation speed, we
propose a fast search method based on binary search to
efficiently solve the subproblem (6).

Firstly, the Karush-Kuhn-Tucker (KKT) conditions for the
subproblem (6) are given as

Primal feasibility

(σ) πful − πs −
∑
t∈T

βpt ≤ 0 (9)(
ξt
)

pt − pmax ≤ 0, ∀t ∈ T (10)(
ηt
)

0− pt ≤ 0, ∀t ∈ T (11)

Stationarity

θt + λt + αC′
(
pt
)
− βσ + ξt − ηt = 0, ∀t ∈ T (12)

Dual feasibility

σ ≥ 0 (13)
ξt, ηt ≥ 0, ∀t ∈ T (14)

Complementary slackness

σ

(
πful − πs −

∑
t∈T

βpt
)

= 0 (15)

ξt
(
pt − pmax

)
= 0, ∀t ∈ T (16)

ηt
(
0− pt

)
= 0, ∀t ∈ T (17)

where σ, ξt, ηt are the KKT multipliers corresponding to the
four constraints (9)-(11).

Consider the following form of solution which is a func-
tion of σ:

for ∀t ∈ T,
pt (σ) =

[
(C′)

−1
(
βσ−θt−λt

α

)]pmax

0

ξt (σ) =
[
βσ − θt − λt − αC′ (pmax)

]
0

ηt (σ) =
[
θt − βσ + λt + αC′ (0)

]
0

(18)

where [x]
y
0 = max {min {x, y} , 0} and [x]0 = max {x, 0}.

Obviously, for any σ ≥ 0, the solution (18) satisfies (10),
(11), (13) and (14).

Theorem 1: For any σ ≥ 0, the solution (18) satisfies
(12), (16) and (17).

The detailed proof is omitted due to page limit. Syntheti-
cally analyzing all cases easily leads to Theorem 1.

Hence, in order to make the solution (18) meet the KKT
conditions, thereby solving the subproblem (6), we only need
to search for the proper σ ≥ 0, such that (9) and (15) are
both satisfied.

Define

h (σ) ,
∑
t∈T

βpt (σ)

=
∑
t∈T

β

[(
C′
)−1

(
βσ − θt − λt

α

)]pmax

0

Then we need to find σ∗ ≥ 0 such that{
h (σ) ≥ πful − πs

σ [πful − πs − h (σ)] = 0
(19)

Note that from (18), pt (σ) can be expressed as follows:

pt (σ) =


0, σ ≤ θt+λt+αC′(0)

β

(C′)
−1
(
βσ−θt−λt

α

)
, otherwise

pmax, σ ≥ θt+λt+αC′(pmax)
β

Obviously, each pt (σ) is piecewise and monotonically non-
decreasing with σ. Considering that the sum of such func-
tions is linear combination, h (σ) will still preserve the same
property.

Take the three cases below into account:
1) If

∑
t∈T

βpmax < πful − πs, which means (19) cannot

be satisfied, then there exists no feasible solution to the
subproblem (6).

2) If h (0) ≥ πful − πs, then σ∗ = 0, thereby leading to
the optimal solution as

pt∗ =

[
(C ′)

−1
(
−θ

t + λt

α

)]pmax

0

3) If h (0) < πful − πs ≤ h (σ∗), then σ∗ > 0, due to the
monotonicity of h (σ). Hence, σ∗ must satisfy

h (σ∗) = πful − πs, σ∗ > 0

In allusion to the third case, we search for σ∗ in the
following way:

Since there are a number T of pt (σ), t = 1, 2, . . . , T , and
each pt (σ) has two breakpoints, there are 2T breakpoints
in total, θ

t+λt+αC′(0)
β and θt+λt+αC′(pmax)

β , t = 1, 2, . . . , T ,
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for the piecewise function h (σ). Let σ1, σ2, . . . , σN denote
all the positive and non-repeated breakpoints among the 2T
breakpoints, where N ≤ 2T and σ0 = 0 < σ1 < σ2 <
· · · < σN . Then for σ = σ0, h (σ) = h (0), and for
σ ≥ σN , h (σ) =

∑
t∈T

βpmax. We propose Algorithm 1 to

locate σ∗ between two breakpoints. Then since the search
range of σ∗ is greatly reduced within two breakpoints, we
can apply binary search to obtain σ∗. Once σ∗ is obtained,
the optimal solution to the subproblem (6), i.e., [pt∗]t∈T, will
be achieved. The algorithm is considered efficient in that its
number of elementary computational steps is bounded by a
polynomial in the size of the time horizon T .

Algorithm 1: Fast Search Method to Subproblem

1 if
∑
t∈T

βpmax < πful − πs then

2 return no feasible solution;
3 else if h (0) ≥ πful − πs then
4 return σ∗ = 0;
5 else
6 l← 0, r ← N ;
7 while r − l > 1 do
8 n←

⌊
1
2 (l + r)

⌋
, where b·c is the floor function;

9 R← h (σn);
10 if R == πful − πs then
11 return σ∗ = σn;
12 else if R < πful − πs then
13 l← n;
14 else
15 r ← n;
16 end if
17 end while
18 T1 ←

{
t| θ

t+λt+αC′(0)
β ≥ σr

}
,

T2 ←
{
t| θ

t+λt+αC′(pmax)
β ≤ σl

}
,

T3 ← T− T1 − T2;

19 return σ∗ = arg

{ ∑
t∈T2

βpmax +∑
t∈T3

β (C ′)
−1
(
βσ−θt−λt

α

)
= πful − πs

}
;

20 end if
21 pt∗ ← pt (σ∗) , ∀t ∈ T

V. DISTRIBUTED IMPLEMENTATION

The battery charging schedule problem can be addressed
in a distributed manner, i.e., a two-level iterative approach.
The two level refers to the station level and battery level,
respectively.

At the battery level, each battery corresponds to several
sequent subproblems. Given λk, the local optimal solution
to each subproblem can be individually obtained, thereby
forming the whole local optimal solution to the battery
charging schedule problem. However, local optimality may
not equal global optimality. According to duality theory,
there exists an optimal Lagrangian multiplier vector λ∗, of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170 6 7 8

Fig. 1. Arrival process of EBs
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Fig. 2. Real-time prices on September 18, 2014

which the corresponding local optimal solution is indeed
global optimal. In this sense, λ functions as a coordination
signal, aiming to align local optimality with global optimal-
ity. Therefore, at the station level, the Lagrangian multiplier
vector λ is updated towards λ∗ step by step.

Note that given λk, the corresponding local optimal solu-
tion to the battery charging schedule problem, i.e., pk, can
be obtained. Therefore, the dual function (5) is simplified as

D (λk) =
∑
b∈B

∑
t∈T

[
ptb,k

(
θt + λtk

)
+ αC

(
ptb,k

)]
−
∑
t∈T

Lλtk (20)

Substituting (20) into (8), we obtain the update rule of the
Lagrangian multiplier vector λ to iteratively solve the dual
problem (7):

λtk+1 =

[
λtk + ν

(∑
b∈B

ptb,k − L

)]+
, ∀t ∈ T (21)

The iterations between the station level and battery level
will continue until a state of equilibrium is reached, thereby
obtaining the global optimal solution p∗.

VI. NUMERICAL RESULTS

For ease of illustration, we take into consideration a
battery-swapping station with 5 charging boxes, which can be
extended to more with similar simulation results. There are
5 original batteries with their initial SOCs in a decreasing
order: 0.7, 0.68, 0.66, 0.64 and 0.62. We consider a time
horizon that covers 17 time slots. The arrival process of EBs
is shown in Fig. 1, which gives the number of EBs that will
arrive at each time slot. The SOC upon arrival of every EB
is randomly generated, subject to N (0.2, 0.025). The real-
time prices shown in Fig. 2 are taken from electricity prices
in Singapore from 6 a.m. to 11 p.m. on September 18, 2014.
Other parameters are set as follows: πful = 0.9, pmax = 0.3,
L = 0.9, α = 1 and βb = 1, ∀b ∈ B.

Respectively, Fig. 3(a) and Fig. 3(b) demonstrate that at
time slot 8, the corresponding charging power of all the

320

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 04:46:57 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100 120
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Iteration number

C
ha

rg
in

g 
po

w
er

 (
p.

u.
)

 

 

battery 1
battery 2
battery 3
battery 4
battery 5

(a)

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

Iteration number

La
m

bd
a

(b)

Fig. 3. Convergence of (a) Charging power at time slot 8 (b) λ8

0 2 4 6 8 10 12 14 16
0

0.2
0.4

Time (h)

P
ow

er
 (

p.
u.

) (a) Scheduled battery 1

0 2 4 6 8 10 12 14 16
0

0.2
0.4

Time (h)

P
ow

er
 (

p.
u.

) (b) Scheduled battery 2

0 2 4 6 8 10 12 14 16
0

0.2
0.4

Time (h)

P
ow

er
 (

p.
u.

) (c) Scheduled battery 3

0 2 4 6 8 10 12 14 16
0

0.2
0.4

Time (h)

P
ow

er
 (

p.
u.

) (d) Scheduled battery 4

0 2 4 6 8 10 12 14 16
0

0.2
0.4

Time (h)

P
ow

er
 (

p.
u.

) (e) Scheduled battery 5

Fig. 4. Scheduled battery charging process

batteries and λ8 are iteratively obtained. They converge
quickly within a small number of iterations. Time slot 8
is taken as an example to show the fast convergence of
our proposed approach and all the other time slots share
the same convergence speed, which is desirable in real-time
operations.

The scheduled battery charging process is shown in Fig. 4.
It can be seen that if possible, all the batteries tend to
be charged when the real-time price is low. Meanwhile,
the coordination of the 5 batteries is achieved through the
adjustment of the Lagrangian multiplier vector λ. In this
way, those batteries with more deadline pressure are charged
with priority. Fig. 5 shows the SOC dynamics of the 5
batteries. The sudden fall of the SOC during the charging
process of each battery indicates that a fully-charged battery
is replaced by a low-SOC battery. It can be observed that
by means of our proposed approach, all the battery swap
requests are fulfilled, and at the same time, the total cost of
the battery-swapping station is minimized through efficient
battery charging schedule.

VII. CONCLUSION

In this paper, the battery charging schedule problem of
a battery-swapping station for EBs is investigated. Based
on our proposed EB assignment policy, all coming EBs are
assigned to a specific battery, such that the battery-swapping
station can schedule the charging of all batteries to prepare
for the battery swap requests from EBs in advance. Taking
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Fig. 5. SOC dynamics

into consideration some spatially and temporally coupled
physical constraints, the battery charging schedule problem
is formulated as a constrained convex program, which can
be decomposed into a series of local subproblems by means
of dual decomposition and our proposed EB assignment
policy. In allusion to each subproblem, an efficient fast search
method is put forward, thereby ensuring that the battery
charging schedule problem can be addressed in a distributed
manner. Numerical results validate our theoretical analysis.
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