
 

   
Abstract—In this paper, we formulate an optimal scheduling 

problem for demand response (DR) that schedules residential 
electrical appliances load to shave peak load. The schedule aims 
to minimize the total incentive cost and power loss over the 
power flow variables, subject to load capacity of users, grid 
operational constraints and the AC power flow equations. To 
deal with the nonconvexity of power flow equations, we present a 
solution based on second-order cone programming (SOCP) 
relaxation of optimal power flow. Furthermore, if the SOCP 
relaxation is exact, our algorithm yields a globally optimal 
solution. Finally, we evaluate the performance of our method by 
numerical simulations, which indicate that it is efficient and 
flexible. 
 

Index Terms—Demand Response (DR), second-order cone 
programming (SOCP), DistFlow equations, convex relaxation 

I.  INTRODUCTION 
HE electricity demand has been rapidly increasing, 
especially in residential sectors. The seasonal variation of 

loads has brought a lot of challenges in system security and 
operation of the grid, for example, residential air conditioning 
accounts for more than a third of the peak load, even 40% in 
summer, while in winter, the air conditioning and water heater 
load also take a high proportion [1]. Hence, it is necessary to 
flat the load curves of residential users by load curtailment in 
peak period. It is widely believed that well controlled 
residential appliances could help stabilize the power system 
[2]. There are already many works on direct load control 
(DLC) [3]-[5]. 

Great efforts have been made to reduce peak loads by 
demand response (DR). Intelligent control devices, such as 
smart plugs, have been widely connected to the smart gird, 
which could monitor and control electrical appliances by 
energy management service (EMS) [6],[7]. Recently, 
residential demand has played an important role in shaving 
peak electricity demand, since residential loads response are 
faster-responsive and more flexible. Residential appliances 
could be operated centrally by a home energy management 
systems (HEMS) [8]-[11]. Aggregated load modeling and 
control have also been studied extensively for load shifting 
purpose in the literature, especially for thermostatically 
controlled loads (TCLs). [12] presents a concept of thermal 
comfort level within comfort zone for aggregate load 
modeling. However, residents have to bear some degree of 
discomforts for changing their consumption behavior, since it 

is difficult to model dynamic behavior of users in response to 
the incentives from the EMS [13]. As for Non-thermostatically 
control load, EMS refers to shift load from the on-peak hours 
to the off-peak hours, which will bring great benefit to not 
only the user but also the grid. Therefore, the main challenge 
is how to attract more users to participate in load reduction 
scheduling. 

In the power system, the optimal power flow (OPF) is a   
fundamental problem. OPF determines a minimum cost 
operating point for an electric power system. Therefore, there 
has been a great deal of research on OPF [14]-[20]. OPF seeks 
to optimize a certain objective function, for example power 
loss, generation cost, and user utilities, subject to Kirchhoff’s 
laws, and operational constraints on the voltages and line 
flows [21]. OPF underlies the whole power network operation 
with load reduction. However, generally the AC power flow 
equations are nonlinear and even nonconvex. Thus, it is 
challenging to solve a joint load reduction and OPF problem 
[22]. 

In this paper, an optimal load reduction allocation is 
proposed. Our main contributions are as follows: 

1)   A step-increase incentive mechanism is designed to 
encourage load reduction from residents. 

2)  Load reduction is implemented in a radial distribution 
network with consideration of line power losses. A joint 
load reduction and OPF problem is formulated to 
determine an optimal allocation among all nodes. 

The rest of this paper is organized as follows. Section II, 
presents the load reduction model as well as incentive 
mechanism. Section III, solves a SOCP relaxation of the OPF. 
This allows us to get an optimal solution. In Section IV, we 
run a simulation with a 56 buses radial network. Finally, the 
conclusion is drawn in section Ⅴ. 

II.  PROBLEM FORMULATION 

We mainly consider a scenario where all household 
electrical appliances, e.g., heating, ventilation and air 
conditioning (HVAC), are connected by a smart plug. 
Residents are voluntary to participate in DR programs hosted 
by the utility company for better operation of the distribution 
network. Therefore, it is assumed EMS has direct load control 
over the state of residential electrical appliances. By this 
mechanism, end users in the distribution grid are active in the 
sense that their controllable loads contribute to improving the 
system operation by reducing or shifting in a minimum-
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interruption way. In each scheduling slot, when power 
generation becomes economically inefficient to meet 
residential demand, the EMS could adjust the status of 
electrical appliances to achieve another balance with higher 
efficiency. Usually, the EMS could be structured as follows. 
In the system, each node is connected to a home gateway and 
all electrical appliances with smart plugs via a wireless 
communication network, gather power consumption on each 
of the monitored household appliances. Therefore, smart plugs 
could collect data and then save in the database, which is the 
hardware foundation. 

 
Fig. 1.  Demonstration of the EMS Structure 

Our goal is to design a scheduling scheme that minimizes a 
weighted sum of the incentive cost for demand response and 
power loss in the distribution network, while respecting the 
grid operational constraints and AC power flow equations. 

We make one simplifying assumption that load control is 
implemented at the same timescale of optimal power flow, 
thus we will only focus on one slot scheduling. 

A.  Network Model 
We consider a radial distribution network with a    

connected directed graph ( , )G N E , where ( , )G N E is the 
set of nodes (demand response users), and E N N   is the 
set of edges (lines). The network has a tree topology with 
slack bus 0 representing a substation as illustrated in Fig.2. 

 
Fig. 2.  A Distribution Radial Network 

Assume the power flow always points away from the slack 
bus to leaf nodes. Denote a line by (j,k) or j k if it points 
from node j to node k. Let jkz  be the complex impedance on 

the line (j,k). Let jki  be the complex current from node j to 

node k . Let ,j kv v  be the complex voltage at node j and k, 

respectively. Let jk jk jkS P iQ  be the sending-end complex 

power from node j to node k, where jkP and jkQ  denote the 

active and reactive power flow respectively.  
At each node j has the base load l l l

j j jS p iq  , including 

the HVAC load, where l
jp  and l

jq denote the active and 
reactive base loads. Assume each node (user) may also has its 
own distributed generation g g g

j j jS p iq  , e.g. rooftop solar 

panel, small wind turbine. Let jS denote the nodal complex 
power injection, which follows: 

j j jS p iq                                          (1a) 

  ( )g l
j j j jp p p P                                   (1b) 

g l
j j jq q q                                        (1c) 

where jP denotes the scheduled load reduction at bus j. 

jp , jq denote the active and reactive power injection 
respectively. 

We use the DistFlow equations to characterize the 
distribution network flows. 

: :

( )+ ,jk ij ij ij j
k j k i i k

S S z l S j N
 

                  (2a) 

2
2 Re( ) ,H

j k jk jk jk jkv v z S z l j k E                (2b) 
2 2
jk ,j jk jkv l P Q j k E                          (2c) 

where 
2

:j jv V and 
2

:jk jkl I  . The equations (2a) imposes 

power balance at each node, the equations(2b) is the Ohm law, 
and (2c) defines the branch power. The quantity 

2

ij ijz I represents loss on line (j,k), thus 
2

ij ij ijS z I  is the 

receiving-end complex power at bus j from bus i. 
Let the set of the branch flow equations vector variables 

( , , , ) ( , , , , , , , , ( , ) )j j j jk jk jks v i S p q v i P Q j k N j k E   , and the 
equation (2c) are quadratic. 

The operation of the distribution network must meet certain 
specifications, the squared voltage magnitudes must satisfy: 

,jj jv v v j N                                  (3a) 

where jv and jv  are given lower and upper bounds on the 
squared voltage magnitude at bus j. The active and reactive 
generations must satisfy: 

1,
gg g
jjj

p p p j N                              (3b) 

 1,
gg g
jjj

q q q j N                              (3c) 

where g

j
p ,

g

jp , g

j
q and 

g

jq are given lower and upper bounds on 

the real and reactive power generation at bus j respectively. 
1N is the number of generator. The power flow on line (j,k) 

must satisfy: 

P ,
ll l
jkjk jkP P j k E                        (3d) 

where l
jkP and 

l
jkP  denote the capacity of line (j,k). 

The DistFlow model is quite general. If a quantity is known 
and fixed, then we set both its upper and lower bounds to the 
given quantity. e.g., if there is no distributed generation at bus 
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j , the 0
g gg g
j jj j

p p q q    . 

B.  Response Demand Incentive 
Traditionally, peak demand is supplied by capacity reserves 

from generators, which are idle most of the time. Demand 
response is widely regarded as an economically efficient 
resource that can actively participate in the peak load shaving 
in power system. By providing incentives, the EMS can 
induce end users to reduce their demand. 

With incentives from the EMS, each customer has the 
different adjustable capacity. Let M denote the different levels 
of scheduling capabilities. Their locations are fixed and 
known. Before scheduling the load of user, Suppose the utility 
company and users have a protocol that according to the 
historical electricity profile of user, different scheduling 
capabilities have different incentives. The energy management 
service offers a different incentive package, represented by 

                                 

1
1 1,

,

ref

i
m

m m ref

c p p
c

c p p

 


 
 

                              (4) 

where ic denotes the incentive factor, and m
refp denotes different 

adjustable capacity levels, it is the package adjustable power 
upper bounds.  

It is legitimate to reduce load by controlling the state of 
residential appliances without affecting the normal life of user. 
However, different electrical characteristics lead to different 
scheduling methods. 

Load type:  The residential loads could be categorized into 
three types [23],[24].  

1) Thermostatically controlled load such as the air 
conditioning, water heaters and ventilation of which 
the power consumption is directly related to the 
temperature. For example, when user initially sets the 
temperature to 23 Celsius degrees, EMS could adjust it 
to 26 Celsius degrees if needed. 

2) Non-thermostatically controlled load like the PHEVs, 
washing machines, and cloth dryers, which can flexibly 
shift their power consumption as long as the tasks are 
finished within the given period. 

3) Critical Loads like the refrigerator which must be 
turned on all the time. 

In order to achieve the purpose of reducing power, EMS 
needs to schedule these three types of residential loads. 

We make an assumption that the target total load reduction 
is always achievable by all adjustable loads. Suppose the grid 
has in total hMW power deficit. This assignment satisfies the 
following condition: 

1

=
M

m
i

m i m

p h
 

                                      (5) 

, , 1,2,..,m m
i ref mp p i m M                     (6) 

, , 1,2,..,m l
i i mp p i m M                      (7) 

where m
ip  denotes the reduction load at node i. i.e., the total 

power deficit is made up through the reduction of all loads. 
The load reduction demand response couples with the OPF. 

We are interested in the following optimization problem: 

1

min

. . (1)(2)(3)(4)(5)(6)(7)

M
m

m i ij ij
m i m i j

c p r l

s t


 

                      (8) 

where ij ij
i j

r l  is the total real power loss of the lines and 

0  , is a weight that makes the incentive cost and the power 
loss comparable. 

III.  SOLUTION 

The joint load reduction and OPF problem (8) are generally 
difficult to solve because (2c) is nonconvex, and the incentive 
is segmented. The following is our solution strategy. 

SOCP relaxation.  We first relax the nonconvex constraint 
(2c) into a second-order cone, i.e., replace the DistFlow 
equations (2) by 

: :

( ) ,jk ij ij ij j
k j k i i k

S S z l +S j N
 

                 (9a) 

2
2 Re( ) ,H

j k jk jk jk jkv v z S z l j k E             (9b) 
2 2
jk ,j jk jkv l P Q j k E                       (9c) 

In order to verify the accuracy of equation (9c) at the 
optimum after relaxation, check if D  is less than a small 
enough predetermined constant  . 
                         2 2( ) ( )jk jk jk jD P Q i v                           (9d) 

Then the SOCP relaxation of the problem (8) is: 

1

min

. . (1)(3)(4)(5)(6)(7)(9)

M
m

m i ij ij
m i m i j

c p r l

s t


 

                      (10) 

The problem (10) is a convex problem, which is a 
relaxation of the problem (8). Given mc , in the sense that the 
optimal objective of the relaxation (10) lower bounds that of 
the original problem (8). If an optimal solution to the 
relaxation (10) attains equality in (9c) then the solution is also 
feasible, and therefore optimal, for the original problem (8). In 
this case, we say that the SOCP relaxation is exact. Sufficient 
conditions are known that guarantee the exactness of the 
SOCP relaxation. Hence, we will solve (10) instead of (8) by 
turning to the off-the-shelf solvers, e.g., CVX. 

IV.  NUMERICAL RESULTS 

In this section, we evaluate the proposed method through 
numerical simulations using a 56-bus Southern California 
Edison (SCE) distribution grid case with a radial structure. 
More details about the feeder can be found in TABLE I. 
Suppose in a certain control interval, the constant incentive 
vector is [0.8,1.0,1.3]c  . Each node could respond to 
scheduling quickly. We set the total power deficit 1.0h MW . 
The unit of power, the unit of voltage and the unit of 
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resistance, are respectively MVA , KV , and  . All                                                                              
numerical tests are tested on a laptop with Inter(R) Core(TM) 
i7-6700HQ CPU @ 2.60GHz 8GB RAM, and 64-bit 
Windows 10. 

TABLE I 
Distributed generator data 

bus 
maxQ  minQ  maxP  minP  

1 2.0 -2 4.0 0 
4 1.5 -1.5 2.5 0 

26 1.5 -1.5 2.5 0 
34 1.5 -1.5 2.5 0 

Without DCL policy. Without direct control load, the default 
policy is that all generators raise their power generations 
uneconomically. Moreover, it can cause voltage instability, the 
voltage magnitudes of some buses may drop below a pre-
specified threshold. 

Optimal allocation. Fig. 3 shows the optimal allocation 
computed using the proposed method for the two cases 
( 1.0h MW and 3.0h MW ). At the peak period, we need to 
adjust the load at each node. Grid operational constraints such 
as voltage stability are taken into account. The tradeoff 
between the incentive cost and the power loss is optimized as 
follow: 
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Fig. 3.  Scheduling of Distribution grid Load Reduction 

As we can see from the Fig. 3, reducing loads at nodes 
electrically far away from the slack bus, can reduce more line 
loss. The corresponding partial OPF results of 

the 1.0h MW case is listed in TABLE II. 
TABLE II 

Partial Power Scheduling Bus under Optimal Allocation 

bus 
1p ( )k  ( . )jv p u  bus 

1p ( )k  ( . )jv p u  
11 0.0844 1.0249 39 0.0638 1.0411 
14 0.0718. 1.0219 48 0.1715 1.0338 
18 0.1264 1.0167 54 0.0769 1.0311 
19 0.1096 1.0160 55 0.0693 1.0315 
37 0.2262 1.0393 / 

Exactness of SOCP relaxation. Finally, the exactness of 
SOCP relaxation can be guaranteed at the optimum as shown 
in the equation (11). We tried many tests, and in most cases, 
the relaxation is exact. In general, SOCP relaxation is able to 
help solve load reduction scheduling during peak period. 

                               1.0

3.0

=3.5941e-07
1.8763e-07

h

h

D
D









                         (11) 

Calculation work. Our optimal scheduling problem, requires 
fast speed to demonstrate the appliance potential of this 
method. The time required for calculation of different levels 
of load reduction is calculated. Essentially, this is a nonlinear 
second-order cone programming. We use the CVX to solve 
this problem on MATLAB R2015a platform. Fig. 4 shows the 
calculation time for different levels of load reduction, which 
validates computational efficiency of this method. When we 
schedule the load reduction of 1.0MW , the average 
calculation time is about 2.1 seconds (The total 
load =4.83MW ). Fig. 5 shows the average scheduling bus 
number with different reduction load. The more load to be 
scheduled, the more buses are needed. 

 
Fig. 4.  Average computation time 

 
Fig. 5.  Scheduling bus number 
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Benefit. Fig. 6 shows the reduction of power loss with respect 
to total load reduction under different 's . With the increase 
of load reduction levels, the corresponding power loss 
becomes smaller. Besides, smaller the weight   is, the 
smaller power loss is. 

 
 Fig. 6.  Relative Reduction Branch Active Power Loss 

V.  CONCLUSION 
We formulate an optimal scheduling problem for demand 

response (peak shaving) that allocates each node a best power 
reduction consumption based on its electrical appliances load 
status by EMS adjustment. The schedule aims to minimize the 
total user incentive cost and power loss on lines over power 
flow variables, subject to grid operational constraints and AC 
power flow equations. We propose a centralized solution that 
relaxes the nonconvex constraint of the OPF into a second-
order cone to handle allocation. Numerical case studies on the 
56 buses distribution network show the SOCP relaxation is 
mostly exact and computes an optimal solution efficiently. 
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