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Abstract—This paper proposes a novel cooperative charging
strategy for a smart charging station in the dynamic electricity
pricing environment, which helps electric vehicles (EVs) to eco-
nomically accomplish the charging task by the given deadlines.
This strategy allows EVs to share their battery-stored energy with
each other under the coordination of an aggregator, so that more
flexibility is given to the aggregator for better scheduling. Mathe-
matically, the scheduling problem is formulated as a constrained
mixed-integer linear program (MILP) to capture the discrete
nature of the battery states, i.e., charging, idle and discharging.
Then, an efficient algorithm is proposed to solve the MILP by
means of dual decomposition and Benders decomposition. At last,
the algorithm can be implemented in a distributed fashion, which
makes it scalable and thus suitable for large-scale scheduling
problems. Numerical results validate our theoretical analysis.
Index Terms—Benders decomposition, distributed optimization,

dual decomposition, pricing.

I. INTRODUCTION

T HE conventional power grid is facing great challenges
caused by increasing demand and aging infrastructure.

Economically, it is not wise to unlimitedly augment generation
capacity to meet demand. Therefore, smart grid emerges to en-
hance the tolerance of the power grid for future potential de-
mand, e.g., electric vehicles (EVs') charging load, and intermit-
tent renewables, e.g., wind and solar energy. Smart grid allows
active participation of users via demand response (DR), which
plays a key role in load scheduling [2]–[6].
With the rapid development of EVs, means of transportation

will undergo great changes in the near future [7]. As EVs
gradually penetrate into our daily life, they will consume a
tremendous amount of electricity energy. According to [8],
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if 30% of conventional vehicles in the US were substituted
by EVs, the total charging load would reach around 18% of
the US summer peak load. Moreover, uncoordinated charging
of EVs easily leads to a load peak which coincides with the
original base load peak [9], and may crash the distribution grid.
Therefore, scheduling on EVs' charging behavior is essential to
relieve the burden on the distribution grid. Charging stations
are among the most common places for EVs to be charged,
where it is convenient to coordinate numerous EVs' charging
behavior [10]–[13]. Typically, it is unrealistic to directly control
each EV's individual charging behavior, but it is possible to
incentivize EVs through financial benefits to make the optimal
charging decisions. The PowerMatcher [14], an agent-based
software technology, can function as a charging decision-maker
for each EV. However, individual optimality, achieved by
PowerMatcher, in most cases cannot lead to global optimality.
To mitigate the gap between local optimality and global opti-
mality, the coordination of numerous EVs' charging behavior
in a charging station is needed.
An important feature of EVs is their capability of storing

energy, which provides great flexibility for scheduling in en-
ergy management and demand response. For example, vehicle-
to-grid (V2G) is a widely studied paradigm that enables EVs
to transfer energy back to the power grid. By this means, EVs
can provide various ancillary services to the power grid, which
benefits both sides. Moreover, [15] investigates the possibility
of EVs' transferring energy to homes, named vehicle-to-home
(V2H), such that the residential power scheduling can be more
flexible and enhanced. The mechanism of vehicle-to-building
(V2B) is utilized in [16] to reduce a building's peak demand and
daily electricity cost. Conceptually, EVs' capability of storing
energy also contributes to better scheduling of a charging sta-
tion via a similar mechanism of transferring energy among EVs,
named vehicle-to-vehicle (V2V). With this mechanism, in the
charging station some EVs can function as energy storage and
share their stored energy with other more urgent EVs.
Many literatures have studied the scheduling issues of EV

charging [17]–[23]. [17] augments the scheduling problem for
PHEV charging into an optimal power flow (OPF) problem to
obtain joint optimization of OPF-charging. [18] proposes a de-
centralized algorithm to optimally schedule EV charging. The
elasticity of EV loads is exploited to fill the valleys in elec-
tric load profiles. Multi-agent systems (MASs) are utilized in
[19], [20], [21] to coordinate the battery charging of EVs in the
distribution network, considering the technical constraints and
impacts from the distribution network. However, the feedback
ability of EVs is not investigated in these literatures. Some other
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studies, like [22], [23], show potential benefits of establishing a
V2G market. However, to the best of our knowledge the con-
cept of V2V has not been considered in previous research.
In this paper we mainly focus on the scheduling problem of

EV charging in a smart charging station which operates under
the mechanism of V2V. In order to guarantee the proper func-
tion of this mechanism in a charging station, there is an aggre-
gator which coordinates the charging/discharging behavior of
all EVs. When discharging, the EV is transferring its energy to
other EVs through the aggregator. The objective of the aggre-
gator is to minimize the social cost of all EVs in the charging
station. Due to discrete battery states of charging, idle and dis-
charging, the scheduling problem is formulated as a constrained
MILP. By means of dual decomposition and Benders decompo-
sition, a distributed algorithm is proposed to efficiently obtain
the optimal scheduling strategy. The main contributions of this
paper consist of 3 parts as follows:
1) The cooperative scheduling problem of a smart charging

station, which utilizes the V2V energy transfer mechanism,
is analyzed and formulated as an MILP.

2) As the load constraint of a charging station couples all EVs'
charging/discharging behavior together, dual decomposi-
tion is introduced to decompose the scheduling problem
into a series of separable subproblems. Each subproblem
corresponds to the scheduling on a single EV's charging/
discharging behavior and can be solved independently.

3) Due to the existence of binary variables, each subproblem
is still an MILP that cannot be directly solved by conven-
tional methods. Thus, Benders decomposition is applied to
efficiently solve each subproblem.

The remainder of this paper is organized as follows. System
model is described in Section II, followed by problem for-
mulation and transformation in Section III. We focus on
solving subproblems by means of Benders decomposition in
Section IV. Then in Section V, distributed implementation
of the proposed approach is introduced. Numerical results
are given in Section VI, and conclusions are drawn at last in
Section VII.

II. SYSTEM MODEL

A. V2V and Cooperative Charging

Consider a charging station shown in Fig. 1, where a set
of EVs are parking and being charged. All EVs

in the charging station are connected to an aggregator, which
is a coordinator. Let each EV be embedded with a controller,
e.g., the PowerMatcher, as its decision-maker to optimize its
own charging strategy through information exchange with the
aggregator. After parking his EV in the charging station, each
EV owner will set the charging task to be accomplished, i.e., the
deadline for charging and the terminal energy level.
Assume that the charging station allows energy transfer

among EVs, i.e., V2V. With this mechanism, some EVs can
function as energy storage and transfer their stored energy to
other EVs with more urgent deadlines, on the premise that
each EV's charging task must be fulfilled. Meanwhile, the
aggregator, assumed to be in the dynamic electricity pricing

Fig. 1. Charging station.

environment, also procures electricity energy from the power
grid for charging. Since this paper will mainly focus on in-
vestigating the benefit of V2V, the aggregator's capability of
transmitting electricity energy back the power grid, i.e., V2G,
is not considered here.
In order to encourage EVs to participate the V2V program,

each EV will make its own charging/discharging decision in an
autonomous way under the coordination of the aggregator. That
is, the aggregator will set virtual prices for EVs, which func-
tion as a coordination signal; based on virtual prices, every con-
troller will optimize its EV's charging strategy to accomplish
the charging task in the most economical way. In particular, if
an EV chooses to discharge at a certain time slot, it will transfer
(sell) its battery-stored energy to other EVs at the corresponding
virtual price through the aggregator. Ideally, we assume each
controller has full knowledge of its EV's battery states and co-
ordination signals from the aggregator.

B. Constraints

We consider a discrete-time model with a finite time horizon
within which all EVs must finish charging. The time slots of the
finite time horizon are indexed by . The
deadline of EV is denoted as and thus its charging period
is . Note that . Let a pair
of binary variables denote the charging and
discharging states of EV at time slot , respectively.
implies charging and implies discharging. Note that

represents the idle state accordingly. Thus, we
have the following constraints:

(1)

Let continuous variables and denote the charging
and discharging power, respectively, which are bounded as fol-
lows:

(2)
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where and are the maximum charging and dis-
charging power, respectively. Note that both and refer
to the power input/output between EV and the aggregator.
The energy stored in the battery of EV at time slot is de-

noted as , which is bounded as . and
serve as the lower bound and the upper bound of , re-

spectively, which are given according to battery characteristics.
Meanwhile, the dynamic change of is simplified as a linear
process:

where is the initial energy stored in the battery, and
are the charging and discharging efficiencies of

EV , respectively. Then the energy constraint for each EV is
redescribed as

(3)
In particular, the terminal energy level at the deadline is

an inelastic requirement, i.e.,

(4)

For the charging station, let denote the maximum allow-
able load at time slot , which is a conservative load upper
bound. is given by the utility company according to the
overall load information of the distribution grid and may vary
over time to help realize peak clipping and valley filling. As-
sume is known by the aggregator in advance, thus
the load constraint for the charging station is formulated as

(5)

C. Battery Loss
Discharging processes of EVs may accelerate battery degra-

dation, causing additional financial costs to EV owners. As a
result, EVs' batteries cannot be discharged for optimal sched-
uling purpose too frequently. In this paper each EV's battery
loss is included in its owner's total cost, which we quantify as
a convex and non-decreasing function of discharging power,

[24]. For simplicity, we assume it to be a linear func-
tion, i.e., , where is the weighting factor.
Note that the approach proposed below will still apply as long
as the convexity of holds.

III. PROBLEM FORMULATION AND TRANSFORMATION

A. Optimization Problem of Aggregator
The aggregator aims to induce all EVs' charging/discharging

behavior in a way that minimizes the total social cost, i.e., the
aggregator's cost of procuring electricity energy from the power
grid plus all EVs' battery losses. Assume the real-time prices of
the slots to be , and recall the constraints

(1)–(5), the scheduling problem for the aggregator is formulated
as an MILP:
Primal Problem:

(6)

where and are the vectors comprising all binary variables
and all continuous variables, respectively.

B. Primal-Dual Approach and Subproblem of EV
The load constraint (5) couples all EVs together, whichmakes

the primal problem (6) difficult to solve. Thus, dual decom-
position is introduced to decompose (6) into a series of sepa-
rable subproblems, each corresponding to the scheduling on the
charging/discharging behavior of a single EV.
Firstly, (5) is relaxed by introducing the Lagrangian multi-

pliers and , where .
Then we define the Lagrangian for the primal problem (6) as

(7)

Note that the first term in the Lagrangian (7) is separable in
terms of EVs, thus the dual function which minimizes the La-
grangian (7) over and can be described as follows:

(8)

where is a subproblem corresponding to the sched-
uling on the charging/discharging behavior of EV . Note that
each subproblem can be tackled independently, which simplifies
the whole solving process. For ease of presentation, we drop the
notation , thus each subproblem is detailed as follows:
Subproblem:

(9)
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where . serves as the virtual price and
also the coordination signal of time slot , released by the aggre-
gator to all EVs. That is, all EVs will charge (buy) electricity en-
ergy from or discharge (sell) electricity energy to the aggregator
at virtual prices. The subproblem (9) is a scheduling problem
solved by each controller to seek the optimal charging strategy
for its EV that minimizes the total individual cost based on vir-
tual prices.
Virtual prices, mainly decided by Lagrangian multipliers, are

set on the basis of real-time prices. Lagrangian multipliers
and are the coordination parameters to avoid the conflict of
the load constraint (5), which aligns local optimality with global
optimality. If (5) is satisfied without coordination, virtual prices
are consistent with real-time prices, i.e., , .
If overloading is to occur at time slot , the corresponding vir-
tual price will rise to induce EVs to shift their charging demand,
i.e., , . On the contrary, the virtual price falls
to encourage EVs' charging in case of unbalanced discharging,
i.e., , . Through the adjustment of virtual prices,
coordination among EVs can be realized to ensure the load con-
straint (5) is satisfied. The main advantage of this mechanism is
that all EVs can accomplish their charging tasks in the most eco-
nomical way. That is, for less urgent EVs, they can reduce their
individual costs by sharing their stored energy; and for more ur-
gent EVs, they can charge faster by using other EVs' energy and
meet their deadlines.
The corresponding dual problem of the primal problem (6) is

to maximize the dual function (8) over and :
Dual Problem:

(10)

The dual problem (10) is an optimization problem solved by
the aggregator to seek the optimal virtual prices, which can in-
duce all EVs' charging/discharging behavior in a way that mini-
mizes the total social cost. Note that there exist binary variables
in (6), thus only weak duality is guaranteed and there exists a
duality gap between (6) and (10). That is, the maximum value
of (10) is a lower bound of (6).
According to primal-dual theory [25], even though the primal

problem (6) is not convex, the concavity of the dual function
(8) is guaranteed, which makes the dual problem a typical
convex program. Due to the non-differentiability of the dual
function (8), the optimal Lagrangian multipliers, which may
not be unique, can be achieved iteratively by the subgradient
method. Considering the correspondence between the primal
and dual problems, the total social cost is minimized and
the load constraint (5) is satisfied at the meantime with the
optimal Lagrangian multipliers. The Lagrangian multipliers are
adjusted in the subgradient direction of the dual function (8):

(11)

where , and represents the itera-
tion index of the subgradient method. stands for

the step size adjusting the convergence rate, where .
and are the subgradients of the dual function at the

th iteration with respect to and , respectively. With a suf-
ficiently small step size , the subgradient of the dual function
(8) satisfies the Lipchitz continuity condition [26], which guar-
antees the convergence towards the optimal solution to the dual
problem (10).

IV. SUBPROBLEM SOLUTION VIA BENDERS DECOMPOSITION

The subproblem (9) is still an MILP to be solved by each
controller, and Benders decomposition is introduced for effi-
ciency. Based on Benders decomposition, continuous variables
and integer variables are solved separately and iteratively to-
wards the optimal solution [27], [28]. As a result, computational
complexity can be greatly relieved.
According to Benders decomposition, (9) shall be decom-

posed into a master problem and a slave problem. Constraints
that only comprise integer variables are considered in the
master problem, while other constraints are taken into account
in the slave problem when integer variables are given. On the
one hand, the master problem aims to find better integer vari-
ables and approach the optimal ones at every iteration through
the shrink of its own feasible region. On the other hand, the
slave problem is dominated by the given integer variables from
the master problem and aims to search for the corresponding
optimal continuous variables. At every iteration, through ana-
lyzing the feasibility of the solution to the slave problem, we
can add a feasibility constraint or an infeasibility constraint
into the master problem to diminish its feasible region [29].
The two correlative problems are formulated respectively as

follows:
Master Problem:

(12)

Slave Problem:

(13)
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where and are the lower and upper bounds of
, which is the optimal value of the subproblem (9). is a

scalar variable, whose relation with is given in the feasibility
constraints. denotes the iteration index of Benders de-
composition, and in the slave problem is given by solving
the master problem at the th iteration.
The objective function of the master problem has the same

physical meaning as that of the subproblem (9), but its con-
straints are loosened, thus solving the master problem yields a
lower bound . However, at every iteration a feasibility
constraint or an infeasibility constraint will be added into the
master problem which narrows the search region of integer vari-
ables, thus finally the optimal integer variables can be achieved.
The optimal value of the slave problem is an upper
bound because the given integer variables may not be
optimal and what we obtain could just be a feasible solution.
Consequently, lies between and , and through
the iterations between the two problems (12) and (13), the gap
between and will gradually decrease. When the
gap is small enough, is achieved.
The whole process of Benders decomposition algorithm is

detailed as follows:
Step 1: Initialization
Set the iteration index , and

. The feasibility and infeasibility con-
straints are set to null. Randomly choose the initial integer
variables , as long as it satisfies the constraint (1).
Step 2: Solving Slave Problem (at the th iteration)
Given the integer variables , the primal slave problem
is formulated as (13).

By introducing the Lagrangian multipliers ,
, , and for the

corresponding constraints, where , we define
the Lagrangian for the primal slave problem (13) as

(14)

By applying the following transformation:

(15)

we can rewrite the Lagrangian (14) as

(16)

Note that , we define the corresponding dual slave
problem as follows:
Dual Slave Problem:

(17)

In the dual slave problem (17), and are given
integer variables, while , , , and are continuous vari-
ables to be solved. Since (13) is a linear program, strong duality
is guaranteed and there exists no duality gap, which means the
optimal value of the primal slave problem (13) is identical to that
of the dual slave problem (17), i.e., .

Therefore, it is equivalent to solve either problem.
Step 3: Solving Master Problem (at the th itera-

tion)
According to the solution to the dual slave problem (17), in-

teger variables can be improved by adding a constraint into the
master problem (12) as long as the given ones are not optimal.
1) If the dual slave problem (17) is infeasible, the subproblem

(9) will have an unbounded solution which is impractical.
Therefore, there exists no solution with a precise physical
meaning under this circumstance.

2) If the dual slave problem (17) has a bounded solution
, , , and , due to duality

the primal slave problem (13) is feasible. Let denote
the set of iterations at which the solution to the dual
slave problem (17) is bounded. In this case the th it-
eration should be added into , i.e., . The
optimal solution obtained from the primal slave problem
(13) with the given integer variables is a feasible so-
lution to the subproblem (9), but better solutions may
exist. As a result, the optimal value of the primal slave
problem (13) turns out to be an upper bound of and

. At the same time,
a new feasibility constraint is generated and added into
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the master problem (12) based on the bounded solution
to the dual slave problem (17) at the iteration, which
raises the lower bound of . Therefore, at the
iteration the master problem (12) is confined by a set of
feasibility constraints described as follows:

Feasibility Constraints:

(18)

3) If the dual slave problem (17) has an unbounded solution,
due to duality the primal slave problem (13) is infeasible
with the given integer variables . Therefore, these in-
teger variables should be ruled out of our search region. Let

denote the set of iterations at which the solution to the
dual slave problem (17) is unbounded. Under this circum-
stance the th iteration should be added into , i.e.,

. The direction of the unbounded solution to the
dual slave problem (17) can be described as , ,

, and , which can be obtained by solving
the feasibility check problem (FCP) and its corresponding
dual problem. The FCP is an optimization problem aiming
to check the feasibility of the primal slave problem (13)
and figure out the direction of the unbounded solution to
the dual slave problem (17). Then a new infeasibility con-
straint is generated and added into the master problem (12)
to exclude the given integer variables based on the direc-
tion of the unbounded solution to the dual slave problem
(17) at the th iteration. Therefore, at the th itera-
tion the master problem (12) is confined by a set of infea-
sibility constraints described as follows:

Infeasibility Constraints:

(19)

The detailed derivation of feasibility and infeasibility con-
straints is given in the Appendix.
Dynamically, at every iteration there is always one new con-

straint added into the master problem (12). Through solving
the newly modified master problem with tighter constraints, the
lower bound is certainly lifted.

is compared with at the end of every iteration.
Let denote a sufficiently small positive threshold. If

, which means the upper and lower bounds con-
verge to the optimal solution, the whole process ceases. Other-
wise, the algorithm goes to step 2 and repeats the iteration.

V. DISTRIBUTED IMPLEMENTATION

The scheduling problem (6) can be addressed in a distributed
manner, namely through the iterations between the aggregator
level and EV level. As shown in Fig. 2, at the aggregator level
Lagrangianmultipliers are updated according to feedbacks from
all EVs, while at the EV level every controller optimizes its EV's

Fig. 2. Distributed implementation.

charging strategy based on virtual prices released by the aggre-
gator. In a sense, Lagrangian multipliers serve as a coordination
signal which aligns individual welfare with social welfare.
First, the aggregator sets the initial Lagrangian multipliers,

e.g., , . During iteration , given
and , the aggregator releases the virtual prices
to all controllers, where . Every
controller solves its own subproblem (9) independently based
on the virtual prices to obtain an optimal charging strategy. Then
the charging strategy of each EV is reported back to the aggre-
gator. Upon receiving all feedbacks , the aggregator
updates the Lagrangian multipliers according to (11) and then
releases the new virtual prices to all controllers.
Note that given and , the dual function (8) is simpli-
fied and the update rule of the Lagrangian multipliers for any
time slot can be easily derived:

(20)
The iterations between the aggregator and EVs will continue

until an equilibrium is reached. Then the optimal virtual prices
are finally released by the aggregator,

which ensures the total social cost is minimized.

VI. NUMERICAL RESULTS

For ease of illustration, we first take a charging station with 3
EVs into consideration. Then the proposed approach is applied
to large-scale charging stations to demonstrate its advantages of
distributed implementation and parallel computation. EVs are
assumed to be identical with parameters listed in Table I. The
hourly-based real-time prices of the four time slots are given as
9.5, 8.3, 6.2, 5.3 (cent/kWh), and the corresponding maximum
allowable loads for the charging station are assumed to be 9.9,
10.8, 13.5, 14.2 (kW). These parameter settings are used, mainly
for the purpose of revealing how the mechanism works under
different load and price conditions. All the following simulation
results are obtained by MATLAB R2012a running a laptop PC
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TABLE I
PARAMETER SETTINGS FOR EVS

Fig. 3. Convergence of virtual prices.

with Intel Core i7-3632QM CPU@ 2.20 GHz, 8 GB RAM, and
64-bit Windows 8.1 OS.
Fig. 3 shows the convergence of the virtual prices. The vir-

tual prices of time slot 2 and 4 remain the same as the original
real-time prices, since the load of either time slot satisfies the
corresponding load constraint without the aggregator's coordi-
nation. At these two time slots, only the aggregator sells elec-
tricity energy and all the 3 EVs are charging. Under this circum-
stance, the aggregator is a non-profit intermediary. However,
the situation is different at time slot 1 and 3, where their virtual
prices are iteratively adjusted and ultimately converge to the op-
timal prices. As the original real-time price of time slot 1 is quite
high, the EVs would rather not charge, and may even discharge
if possible. In order to avoid unbalanced discharging, the ag-
gregator has to lower the virtual price. Under this circumstance,
the aggregator just sets the proper virtual price such that the en-
ergy transfer among EVs is balanced inside the charging station
without procuring additional electricity energy from the power
grid. Hence the aggregator is still non-profit under this circum-
stance. On the contrary, the original real-time price of time slot
3 is relatively low, thus the EVs would prefer charging with
the maximum charging power, which makes the total load of
the charging station exceed the corresponding maximum allow-
able load. Then the aggregator has to raise the virtual price, so
that some EVs would shift part of their charging power to other
time slots to ensure that the maximum allowable load would not

Fig. 4. Optimal scheduling on EVs' charging/discharging behavior.

Fig. 5. Greedy scheduling on EVs' charging/discharging behavior.

be exceeded. Since there is a price rise, the aggregator is prof-
itable under this circumstance. It can be observed that the aggre-
gator aims to coordinate EVs' charging/discharging behavior by
pricing to satisfy the load constraint of the charging station.
As long as the convergence of the virtual prices is reached, the

optimal scheduling on the EVs' charging/discharging behavior
can be easily obtained, which is shown in Fig. 4. With sufficient
time to be charged to the terminal energy level, EV 1 tends to
discharge and get paid at time slot 1 when the virtual price is
high. Then it chooses to charge with the maximum charging
power at time slot 4 because the virtual price is the lowest. The
virtual prices at time slot 2 and 3 are almost equal, thus EV 1
will adjust its charging power properly to avoid overloading of
the charging station. Other EVs follow the similar principles,
but there are a few special circumstances. For example, neither
EV 2 nor EV 3 has the option to discharge due to lack of time.
Fig. 4(d) shows the total charging load of the charging station.
It is obvious that the load constraint for the charging station
is satisfied. By the proposed approach, the total social cost is
195.17 cents.
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Fig. 6. Impact of EV number on (a) average time of one iteration, (b) iteration number, and (c) computation time.

For comparison, Fig. 5 shows the greedy scheduling on the
EV's charging/discharging behavior with a heuristic strategy,
which charges the EVs at the possible lowest-price time slots,
with the possible largest charging power in priority order of
deadline pressure. Note that this strategy requires the aggre-
gator to have centralized control over all the EVs, which is not
practical. Moreover, the aggregator loses much scheduling flex-
ibility by this strategy to avoid overloading of the charging sta-
tion. Under this circumstance, the total social cost is 200.36
cents. Therefore, we can observe that it is very effective to regu-
late the charging load of EVs by pricing. That is, by the proposed
approach there is a 2.6% reduction in the total social cost, and
in addition, much more scheduling flexibility is provided.
In order to show the scalability of our proposed approach, we

increase the number of EVs to evaluate its impact on the average
time of one iteration, the iteration number and the total compu-
tation time, respectively.1 The deadlines of EVs are extended
to 8 time slots at most to cover a more general case. The op-
timal scheduling with different numbers of EVs, starting with
6 and going up to 48, is investigated and the preceding three
types of data are recorded, presented in Fig. 6. Fig. 6(a) shows
that the minimum, average and maximum time of one itera-
tion all vary little with the increase of EVs. However, as the
EV number increases, the iteration number increases in a linear
trend with slight oscillation, which is shown in Fig. 6(b). Since
the average time of one iteration is roughly constant, the total
computation time is mainly dependent on the iteration number.
As a result, the profile of the total computation time, as shown
in Fig. 6(c), is similar to that of the iteration number. It can be
observed that the total computation time required for conver-
gence increases almost linearly instead of exponentially. Ap-
proximately tens of seconds are needed to solve the optimization
problem for a charging station with tens of EVs. Since it usually
takes hours to charge an EV in daily life, our proposed approach
is adequate for the scheduling of a large-scale charging station.
Furthermore, as a comparison we directly solve the complete
scheduling problem via Benders decomposition in a centralized
manner. The computation time of centralized Benders decom-
position, as shown in Table II, grows explosively as a charging
station scales up. It takes more than 5 h, around 1000 times of

1All the computation time in this paper is obtained by our laptop PC to show
the relative computational efficiency.

TABLE II
CENTRALIZED BENDERS DECOMPOSITION

the computation time of the proposed approach, to work out the
optimal strategy for a 9-EV schedule, which apparently fails to
meet the requirement of real-time applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, the optimal scheduling on EVs' charging/dis-
charging behavior in a charging station is investigated. Based on
the newly proposed energy transfer mechanism V2V, we formu-
late the scheduling problem as an MILP with a load constraint
for the charging station and several charging constraints for each
EV. Since the load constraint couples all EVs' charging/dis-
charging behavior together, dual decomposition is introduced
to decompose the primal problem into a series of subproblems.
Each subproblem is still an MILP, but can be solved on each
EV. Benders decomposition is then applied to efficiently solve
each subproblem. The proposed approach can be implemented
in a distributed manner, thus it is suitable for the scheduling of
large-scale charging stations which can hold a great quantity of
EVs. Numerical results validate our theoretical analysis.
We consider a static scheduling problem with a fixed opti-

mization horizon and a constant number of EVs in this paper.
Such a simplification avoids the uncertainties due to stochastic
arrivals of EVs, prediction deviation of real-time prices, etc. In
practical applications, a receding-horizon framework can be ap-
plied to deal with all these uncertainties, which contains two
steps, i.e., first, focus on the existing EVs, assume all future pa-
rameters are known (e.g., forecasts from historical data), and
solve a deterministic scheduling problem; second, consider the
arrivals/departures of EVs, update the parameters (forecasts) in
real time as more information becomes available, and re-solve
the scheduling problem. By this means, the proposed approach
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can be implemented online and the resulting charging schedule
is updated in real time [30], [31].
In future work some relevant extension directions, e.g.,

EV demand forecasting, dynamic price forecasting, as well
as the fail-safe operation, emergency operation and reliability
evaluation of a charging station which operates under V2V
mechanism, might be considered. Also, a charging station, as
an economic entity, is important to have a profitable business
model and the end-to-end economic analysis could be included.
Moveover, we would like to study the interactions and mutual
effects of multiple charging stations, which involves a higher
aggregation level.

APPENDIX
NORMALIZED CLASSICAL BENDERS DECOMPOSITION

Consider a normalized form of a mixed-integer programming
problem as follows:

(21)

where is a subset of with integer-valued components.
is a continuous vector and is an integer vector. Note that
and are -dimensioned vectors, is a -dimensioned vector,

is a -dimensioned vector, is a -dimensioned vector,
is a -dimensioned vector, is a matrix, is a
matrix. and are scalar functions, is a -di-
mensioned vector function and is a -dimensioned vector
function. All the three functions are defined on . We mainly
focus on the derivation of the feasibility constraints and infea-
sibility constraints, thus , the optimal value of the mixed-in-
teger programming problem (21), is assumed to be bounded.
If is given, the mixed-integer programming problem (21) is

linear in , and it can be rewritten as

(22)

where

Therefore, the mixed-integer programming problem (21) can be
decomposed into a master problem and a slave problem, and the
optimal solution can be obtained by an iterative approach.
At every iteration, e.g., the iteration, we begin with

solving the following master problem to obtain :

(23)

At the same time, a lower bound of is procured, since the
constraints of the master problem (23) are loosened compared
with those of the mixed-integer programming problem (21). In
the master problem the objective function is a scalar variable,
whose relation with is given in the feasibility constraints. Note
that the feasibility constraints and infeasibility constraints are
set to null initially, thus at the first iteration is given arbi-
trarily, as long as it satisfies .
The inner part of (22) is the primal slave problem, which can

be rewritten as

(24)

and the dual slave problem is given as

(25)

Due to strong duality, it's equivalent to solve either problem. In
terms of the dual slave problem (25), according to its solution,
two different types of constraints will be added into the master
problem.
If the dual slave problem (25) has a bounded solution

and , an upper bound of is obtained:

(26)
Note that the feasible region of the dual slave problem (25)

is a fixed polyhedron, which is characterized by its vertices
( , where represents the finite set of all
vertices of the polyhedron). The polyhedron is independent of
the given . As the bounded optimal value of the dual slave
problem (25) must be achieved on a vertex of this polyhedron,
we can make use of this property to approach the optimal
solution to the mixed-integer programming problem (21), i.e.,

.
Note that

(27)

Therefore, is actually
a lower bound of . A corresponding feasibility constraint is
then generated for the master problem (23):

(28)

If the dual slave problem (25) has an unbounded solution,
i.e., the primal slave problem (24) is infeasible, the FCP is in-
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troduced to calculate the direction of the unbounded solution
and generate an infeasibility constraint. The FCP is an optimiza-
tion problem aiming to check the feasibility of the primal slave
problem (24), which is formulated as follows:

(29)

where is a -dimensioned vector and is a -dimensioned
vector.
The dual problem of the FCP is given as

(30)

Through solving the dual problem of the FCP (30), we can
obtain the direction of the unbounded solution to the dual slave
problem (25), i.e., and . Let denote
the optimal solution to the FCP. Note that if the primal slave
problem is infeasible, we have . Due to strong
duality, .
In order to avoid finding again, i.e., to exclude from
the feasible region of , a corresponding infeasibility constraint
is generated for the master problem (23):

(31)

To conclude, let and denote the two set of iterations at
which the solution to the dual slave problem is bounded and
unbounded, respectively, then the master problem is detailed as
follows:

(32)
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