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ABSTRACT

This paper formulates a multi-period optimal station assignment

problem for electric vehicle (EV) battery swapping that takes into

account both temporal and spatial couplings. The goal is to reduce

the total EV cost and station congestion due to temporary shortage

in supply of available batteries. We show that the problem is re-

ducible to the minimum weight perfect bipartite matching problem.

This leads to an efficient solution based on the Hungarian algorithm.

Numerical results suggest that the proposed solution provides a

significant improvement over a greedy heuristic that assigns EVs

to nearest stations.

1 INTRODUCTION

EVs are large loads that can add significant stress to electricity grids,

but they are also flexible loads that can help mitigate the volatility

of renewable generation through smart charging. EV charging how-

ever takes a long time. It is not suitable for commercial vehicles,

such as taxis, buses, and ride-sharing cars, that are on the road most

of the time, the opposite of most private cars. An alternative EV

refueling method is battery swapping where an EV swaps its de-

pleted battery for a fully-charged battery at a service station1. This

can be done in a few minutes. Several such electric taxi programs

are in pilot in China [2].

1.1 Literature review

The literature on scheduling of EV battery swapping is small. In [4]

the operation of a battery charging and swapping station is modeled

as a mixed queuing network, consisting of an interior closed queue

of batteries going through charging and swapping, and an exterior

open queue of EV arrivals. Using this model, [3] proposes an optimal

charging policy. An optimal assignment problem is formulated

in [5, 6] that assigns to a given set of EVs best stations to swap

their batteries. The assignment aims to minimize a weighted sum

of generation cost and EVs’ travel distance by jointly optimizing

power flow variables. The problem focuses on spatial optimization

over power grid operation for a single time slot during which the

set of EVs is fixed.

1.2 Summary

This paper investigates the battery swapping assignment for EVs

and takes into account temporal optimization where EVs arrive over

several time slots. Specifically, we adopt a discrete time model. In

each time slot, a centralized operator optimally assigns stations to a

set of EVs that need battery swapping. Consider the optimal station

1In this paper, stations refer to battery (swapping) stations.

assignment problem at time slot 1 where stations are assigned in

a way that minimizes both the total EVs’ cost to travel to their

assigned stations and the total congestion (battery shortage) levels

at these stations. The problem is a binary program with strong

temporal and spatial couplings. We show that it is polynomial-time

solvable by reducing it to the standard minimum weight perfect

bipartite matching problem. This leads to a solution based on the

Hungarian algorithm for bipartite matching problems.

2 PROBLEM FORMULATION

Consider a group of EVs that swap their depleted batteries for fully-

charged ones at stations assigned by a central operator. Time is

slotted with a constant length. Fix the current time slot as time

slot 1 of the time horizon T := {−Tm + 1, . . . , 0, 1, . . . ,Tm }, and
let T+ := {1, . . . ,Tm }. Tm is a constant which we will interpret

later. Suppose there is a set J := {1, . . . , J } of stations that provide
battery swapping service for EVs. At the current time slot 1, let

I := {1, . . . , I } be the set of EVs that require battery swapping. Our

goal is to optimally assign a station j ∈ J to each EV i ∈ I, such
that a weighted sum of aggregate EV cost and station congestion is

minimized.

2.1 Variables, states, and constraints
LetM := (Mi j , i ∈ I, j ∈ J) represent the current station assignment
to EVs, whereMi j = 1 if station j is assigned to EV i andMi j = 0
otherwise. We require that only one station be assigned to each EV,
i.e., ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
j∈J

Mi j = 1, i ∈ I

Mi j ∈ {0, 1}, i ∈ I, j ∈ J
(1)

Note that we also use Mi j (t ), t = −Tm + 1,−Tm + 2, . . . , 0, to

represent past assignments, which are given.

Let τi j (t ) estimate the arrival time of EV i if it starts to travel

at time slot t from its location to station j. It captures the time-

dependent traffic conditions and also corresponds to an optimal

routing, thus we can readily obtain the associated travel distance,

denoted by di j (t ). We also define τ−1i j (t ) as the inverse function

of τi j (t ), i.e., τ
−1
i j (t ) is the time slot when station j was assigned

to EV i that arrives at time slot t . For brevity, let τi j := τi j (1) and
di j := di j (1), which are available by resorting to, say, Google Maps,

and their explicit modeling goes beyond the scope of this paper.

Now we interpret Tm as the maximum travel time of an EV to

reach a station, i.e.,Tm := maxi, j,t {τi j (t ) − t + 1}. The assignments

before −Tm + 1 are summarized in n0j , and the states of stations

after Tm will not be directly affected by the current assignment.
Let nj (t ) denote the number of available (fully-charged) batteries

at station j at the end of time slot t , which is the station state. In
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particular, nj (0), i.e., the current number of available batteries at
station j , is observed and given. Hence nj (t ) increases by 1 when a
battery at station j becomes fully-charged, and decreases by 1 when
a fully-charged battery is removed by an EV (battery swapping
time is ignored):

nj (t ) = nj (t − 1) + c j (t ) −
∑
i∈Ip

Mi j (τ
−1
i j (t ))

−
∑
i∈I

Mi j · 1(t = τi j ), t ∈ T+
(2)

where c j (t ) is the number of batteries that become fully-charged at

station j in time slot t (which is known a priori), and Ip is the set

of all past EVs that were assigned stations during the time interval

[−Tm + 1, 0]. 1(x ) is an indicator function for the predicate x . The
third and fourth terms on the right-hand-side of (2) summarize the

impacts of past assignments and the current one, respectively. The

second and third terms are both given while the fourth one is to be

decided. Note that nj (t ) can be negative. For instance, nj (t ) = −3
means there will be no available battery at the end of time slot t ,
but 3 waiting EVs.

An EV can only be assigned a station within its driving range,
i.e.,

di jMi j ≤ r si , i ∈ I, j ∈ J (3)

where r is the driving range per unit state of charge and si denotes
the state of charge of EV i .

2.2 Optimal station assignment problem

The system cost has two components. First, a cost αi j is incurred
if station j is assigned to EV i , thus the cost of EV i is

∑
j ∈J αi jMi j .

For example, αi j can be a weighted sum of EV i’s travel distance
and time from its current location to station j . Second, as explained
above, 〈−nj (t )〉+ is the number of waiting EVs at the end of time

slot t , where 〈x〉+ := max{x , 0}.
Let n := (nj (t ), j ∈ J, t ∈ T+) be the vector of station states. We

are interested in the following optimal station assignment problem:

min
M,n

∑
i∈I

∑
j∈J

αi jMi j +
∑
j∈J

∑
t∈T+
〈−nj (t )〉+ (4)

s.t. (1), (2), (3)

which minimizes the weighted sum of aggregate EV cost and station

congestion, subject to EVs’ driving ranges.

3 POLYNOMIAL-TIME SOLUTION

The optimal station assignment problem (4) is a binary program

with temporal coupling (2) and spatial coupling implied in station

congestion. It can however be solved efficiently.

Theorem 3.1. The optimal station assignment problem (4) is solv-

able in polynomial time.

We prove the theorem in the following two steps.

3.1 Reformulation as MILP

Note that all the constraints in (4) are linear in the variables (M,n).
The only nonlinearity is 〈−nj (t )〉+, which can be removed by in-

troducing auxiliary variables v := (vj (t ), j ∈ J, t ∈ T+) to replace

aggregate station congestion by
∑
j
∑
t vj (t ) and requiring vj (t ) to

satisfy the linear constraints vj (t ) ≥ 0 and vj (t ) ≥ −nj (t ). Hence
(4) is an MILP.

To reformulate it into a more convenient form, denote the num-

ber of available batteries at station j over T+ observed at time slot

1 before the current decisionM is made by:

ñj (t ) := nj (0) +
t∑

κ=1

(c j (κ) −
∑
i ∈Ip

Mi j (τ
−1
i j (κ))), t ∈ T+

It is a known constant determined by past assignments. The evolu-
tion of nj (t ) in (2) then reduces to

nj (t ) = ñj (t ) −
∑
i∈I

Mi j · 1(t ≥ τi j ), t ∈ T+ (5)

which is decoupled across time slots, because ñj (t ) and the indicator
function in (5) remove the dependency of nj (t ) on nj (t − 1).

The interpretation ofMi j ·1(t ≥ τi j ) in (5) is as follows. If station
j is assigned to EV i at time slot 1, then it will arrive at time slot

τi j , thus removing one available battery from station j for time slot

τi j and every time slot afterwards. For each station j ∈ J, define an
arrival matrix Aj ∈ {0, 1}Tm×I such that its (t , i ) entry is

Aj (t , i ) := 1(t ≥ τi j )

Finally, let Π denote the set of M with Mi j = 0 if station j is
outside EV i’s driving range, i.e., di j > rsi , and put the above
together, then (4) is equivalent to the following MILP:

min
M∈Π,v≥0

∑
j∈J

∑
i∈I

αi jMi j +
∑
j∈J

∑
t∈T+

vj (t ) (6)

s.t.
∑
j∈J

Mi j = 1, i ∈ I

vj (t ) ≥ −ñj (t ) +
∑
i∈I

Aj (t, i )Mi j , j ∈ J, t ∈ T+

3.2 Reduction to Bipartite Matching

We now show that the MILP (6) can be further reduced to the

minimum weight perfect bipartite matching problem, which is well

known to be polynomial-time solvable.
Define a bipartite graph G = (A ∪ B,E), where A and B are the

bipartition of the vertex set and E ⊆ A×B is the set of edges that are
endowed with given weights ω := (ωab ,a ∈ A,b ∈ B, (a,b) ∈ E).
Without loss of generality, we assume G is complete and balanced
as we can add infinite-weight edges and dummy vertices as nec-
essary. Let N := |A| = |B|. The standard minimum weight perfect
matching problem defined on G is

min
x

∑
(a,b )∈E

ωab xab (7)

s.t.
∑
b

xab = 1, a ∈ A
∑
a

xab = 1, b ∈ B

xab ∈ {0, 1}, a ∈ A, b ∈ B
where x := (xab ,a ∈ A,b ∈ B). Hence an instance of the bipartite

matching problem (7) is specified by the nodesA,B and the weights

ω.
Given an instance of the MILP (6), we now construct an instance

of the bipartite matching problem (7) such that an optimal solution

to (7) yields an optimal solution to (6).

LetA := I∪ Ĩ∪Id . Ĩ is the set of EVs that were previously assigned
stations, but have yet to have their batteries swapped (either on the

way or waiting at stations). We restrict the matchings of EVs in Ĩ
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only with batteries at their originally assigned stations, as captured

in (6). Id is the set of dummy EVs if necessary to make A and B

balanced.

Let B :=
⋃
j ∈J Bj ∪ Bd . Bj is the set of available batteries at

station j, including not only the currently available batteries, but

also those that will become available in T+. The time slot when

battery b ∈ Bj becomes available is denoted as ρb , and ρb = 0 for

the currently available batteries. Bd is the set of dummy batteries

if necessary to make A and B balanced.

Note that nj (t ) can be negative in (6). We have to make up the

shortfall when |I∪ Ĩ| > |Bj | for station j by adding dummy batteries.

More precisely, Bd :=
⋃
j ∈J Bdj , where |Bdj | = max{|I∪ Ĩ| − |Bj |, 0}.

Then Id with |Id | = |⋃j ∈J (Bj ∪ Bdj ) | − |I ∪ Ĩ| is added to maintain

balance between A and B.

The nonnegative weight ωab of the match (a,b) corresponds
to the incremental cost added to the objective of (6) if station j
which battery b belongs to is assigned to EV a. Note that αab = αaj ,

dab = daj and τab = τaj when a ∈ I∪ Ĩ, b ∈ Bj ∪Bdj . To determine

ωab , the main idea is to translate the congestion of stations to the

waiting time each EV suffers.

Case 1: a ∈ I,b ∈ Bj . Set ωab := αab + max{ρb − τab , 0}. Here
max{ρb −τab , 0} is the time length for which EV a has to wait until

battery b becomes available. If dab > rsa , ωab := ∞.
Case 2: a ∈ I,b ∈ Bdj . EVs matched with dummy batteries will wait

until the end of T+ after their arrivals. Hence ωab := αab + (Tm +
1 − τab ). If dab > rsa , ωab := ∞.
Case 3: a ∈ Ĩ,b ∈ Bj . EVs a ∈ Ĩ stick to their originally assigned

stations. If station j is originally assigned to EV a,ωab := max{ρb −
τab , 0}; otherwise, ωab := ∞. No EV cost is included.

Case 4: a ∈ Ĩ,b ∈ Bdj . Likewise, if station j is originally assigned

to EV a, ωab := Tm + 1 − τab ; otherwise, ωab := ∞.
Case 5: a ∈ Id ,b ∈ Bj . Dummy EVs do not really exist, and have

no impact on the match result. Thus we have ωab := 0.

Case 6: a ∈ Id ,b ∈ Bdj . Likewise, ωab := 0.

From above, the parameters of (7) including N and (ωab ,a ∈
A,b ∈ B) can be computed in time of O (N 2) given an instance of
(6). On the other hand, if we have an optimal matching x∗ for (7),
an optimal assignment is straightforward:

M∗i j =
∑

b∈Bj∪Bdj

x ∗ib, i ∈ I, j ∈ J (8)

which is obtainable in time of O (N ).
Hence the optimal station assignment problem (4) is reduced

to the minimum weight perfect bipartite matching problem (7),

which is solvable in polynomial time of O (N 3) by the well-known

Hungarian algorithm [1]. This proves Theorem 3.1.

4 NUMERICAL RESULTS

We illustrate with a case study of I = 25 EVs and J = 3 stations.

Fix Tm = 6, and other parameters are randomly generated, given

which (ñj (t ), j = 1, 2, 3, t = 1, 2, . . . , 6) is attainable, as the red dash
lines show in Fig. 1(a).

The proposed approach efficiently computes an optimal assign-

ment; see Fig. 1(a) for how the number of available batteries at

each station evolves after the assignment. Batteries at station 1 in
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Figure 1: (a) Optimal assignment of our test case. (b) Scala-

bility (#stations=10).

the first half of the time horizon are almost fully utilized to avoid

unduly congesting stations 2 and 3. In the second half, all stations

run out of batteries. Then the optimal assignment strikes a compro-

mise between the least EV cost and the latest time of arrival. For

this test case, a 49.20% improvement is achieved by the proposed

approach compared with a heuristic that assigns each EV to its

nearest station.

We check the computational efficiency of the proposed approach

by scaling up the number of EVs that require battery swapping

while fixing other parameters with J = 10. The computation time

required to run our algorithm on a normal laptop PC is shown in

Fig. 1(b).
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