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ABSTRACT
This work investigates the increasing interactions between power

network dynamics and market dynamics. A dynamical spot pricing

mechanism for rational market behavior of generators and loads is

designed to model market dynamics, which provably drives a power

network to an equilibrium operating point, achieving secondary

frequency control and economic dispatch.

1 INTRODUCTION
An ideal power network operates at nominal frequency and re-

mains stable at an equilibrium where overall power production

matches consumption. However, fluctuations at both supply and

demand sides cause frequency deviation. If not well addressed,

this may propagate across the network and lead to potential black-

outs. Generally, frequency regulation is realized in three stages

of generation-side control: (i) Primary: droop control [17] - fre-

quency stabilization; (ii) Secondary: automatic generation control

(AGC) [7] - frequency restoration; (iii) Tertiary: economic dispatch

- generation and power flow scheduling. Recently, there has also

been emerging interest in designing load-side frequency controllers

[9, 11, 14, 15, 18, 19].

Both primary and secondary stages require direct control of

generators or loads acquired from an early ancillary service market.

The tertiary stage relies on a power market to determine dispatch.

With the increasing low-inertia dispatchable units in the power

system, the frequency of market updates for economic efficiency

may result in a confluence of the actions of secondary and tertiary

control. This confluence is advantageous in two ways. Firstly, real-

time power imbalance can be offset in an ex-post power market that

is more economically efficient. Secondly, market updates take into

account physical responses of the power system and thus reduce

modeling uncertainty.

The concept of market dynamics is first proposed in [1] where a

dynamic uniform pricing mechanism is designed to measure global

energy imbalance. A lot of work adopts similar pricing designs

[3, 5, 10, 16], but neglects spatially-variant values of electricity

due to network congestion. [4, 8, 12, 13] extend the market model

to involve nodal pricing. However, their nodal prices result from

the introduction of virtual flow variables and fail to capture the

economic interpretation of locational marginal prices (LMPs).

In this work we propose a compatible model of market dynamics

based on linearized swing equations. We introduce a precise dynam-

ical spot pricing mechanism to account for both power imbalance
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and line congestion. Further, we model market participants as ra-

tional agents that respond to price changes by maximizing their

local utility. We prove that a controller based on market dynamics

is able to balance power, restore the frequency to its nominal value

and maintain line flows within thermal limits at equilibrium.

2 MODEL
LetR (R+ andR−) be the set of (positive and negative) real numbers

and N be the set of natural numbers. For a finite set H ⊂ N, its
cardinality is denoted as |H |. For a set of scalar variables yj , j ∈ H ,

its column vector is denoted as yH . Sometimes the subscript H is

dropped if the set is clear from the context. Given vectors y and

u, we define an element-wise projection [y]+u where [yj ]
+
uj = yj

if yj > 0 or uj > 0, and [yj ]
+
uj = 0 otherwise. For a matrix Y , YT

denotes its transpose. Let Yj be the jth row of Y and YH be sub-

matrix of Y composed of all the rows Yj , j ∈ H . We may use 1 or 0

to denote a column vector of all 1’s or 0’s if its dimension is clear

without ambiguity.

2.1 Power network
Consider a structure-preserving power network with a connected

directed graph (N , E), where N := {0, 1, . . . , |N | − 1} is the set

of nodes and E ⊂ N × N is the set of edges connecting nodes.

Each node represents a bus and each edge is a transmission line.

The buses in N are partitioned into three categories N = G ∪

L ∪ {0} where G and L are the sets of generator and load buses,

respectively. Note that a generator bus can also have local loads.

For notational convenience, assume bus 0 is a pure slack bus and

each generator bus has only one (aggregate) generator and one

(aggregate) load while each load bus has just one (aggregate) load.

LetN+ := N\{0} = G∪L. We use (j,k) to denote the line from bus

j to bus k . An arbitrary orientation is applied such that if (j,k) ∈ E

then (k, j) < E. Each line (j,k) ∈ E is endowed with an impedance

zjk .

Define the incidence matrixC ∈ R |N |×|E |
for the network graph

where its elementCj,e = 1 if e = (j,k) ∈ E,Cj,e = −1 if e = (k, j) ∈

E and Cj,e = 0 otherwise. Meanwhile, define C̄ ∈ R( |N |−1)×|E |

based on C by eliminating the row that corresponds to the slack

bus to remove dependency. Several standard assumptions for a

linear transmission network model are applied [6]: 1) the voltage

magnitude |Vj | is constant for each bus j ∈ N ; 2) each line (j,k) ∈ E

is lossless, i.e., zjk := ix jk where x jk is a reactance; 3) reactive

power injections and flows are all ignored. These assumptions are

milder than those made in the standard DC approximation of power

flow equations since the nominal phase angle difference across each

line is not necessarily small and trigonometric nonlinearities are

still modeled.

On this premise, the network dynamics are characterized by

Ûθ = ω (1a)
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M ÛωG = rG + p − dG − DGωG −CGBC̄T θN+ (1b)

0 = rL − dL − DLωL −CLBC̄T θN+ (1c)

0 = r0 − D0ω0 −C0BC̄T θN+ (1d)

where θ := (θ j , j ∈ N) denote the bus phase angles, ω := (ωj , j ∈
N) denote the bus frequencies, p := (pj , j ∈ G) denote the out-

puts of generators, and d := (dj , j ∈ N+) denote elastic loads.

M := diag(Mj , j ∈ G) are generators’ inertia, r := (r j , j ∈ N) are

constant step changes of net power injections at buses, i.e., instant

power imbalance, D := diag(D j , j ∈ N) are constants representing

generator damping or uncontrollable frequency-dependent loads,

and B := diag(Bjk , (j,k) ∈ E) are line parameters that characterize

the sensitivity of each line flow to its two-end phase angle differ-

ence (see the derivation of B in Appendix A.1). Here all the state

variables θ andω are deviations from their nominal values. (1a)-(1d)

describe the nodal swing dynamics. Let
˜θ := C̄T θN+ ∈ R |E |

. Since

C̄T is full column rank, there is a bijection between θN+ and ˜θ . In
the sequel we will use both interchangeably.

2.2 Power market
The power network operates as per a schedule determined in an

ex-ante power market, day ahead or hour ahead, at a large timescale.

However, generations or loads cannot avoid deviating from sched-

uled values in real time due to unexpectedness, causing power

imbalance in the network. The imbalance will drive the frequency

away from its nominal value and, if not timely eliminated, may

deteriorate or even disrupt the whole system.

Instead of the conventional regulation services that may idle un-

necessary power reserves, we resort to a dynamical ex-post power
market as a lever for secondary frequency control and congestion

management. We assume a fully competitive market, i.e., no strate-

gic market participant is able to exercise market power. Such a

market is economically efficient in terms of social welfare in na-

ture where each participant, a generator or a load, is an individual

price-taker and rationally minimizes its net cost.

We model the dynamical behavior of the market participants by

T p Ûp = −p + pC − R−1ωG (1e)

T d Ûd = −d + dC (1f)

where Tp := diag(T
p
j , j ∈ G), Td := diag(Tdj , j ∈ N+) are time

constants and R := diag(Rj , j ∈ G) are the droop parameters. pC

and dC are self-control commands for generators and loads, re-

spectively. (1e) captures a simplified turbine dynamical model for

generators, and likewise (1f) mimics the load dynamics. Note that

p,d could be deviations from scheduled values or new generations

and loads, which are presumably responsive in the ex-post power
market.

A power market is distinguished from other generic markets in

that it is a networked market governed by Kirchhoff’s laws. The

commodity in the market, i.e., electricity, is indiscriminate itself but

cannot freely be transmitted and distributed in a multilateral trade.

Physical laws as well as transmission capabilities constrain market

operation and impose spatially variant values on electricity, i.e.,

LMPs. Specifically, a static power market aims to solve a canonical

DC economic dispatch problem (EDP) with line thermal constraints:

EDP-1:
min

p,d,θ
N+

∑
j∈G

Jj (pj ) −
∑
j∈N+

Uj (dj ) (2a)

s.t. rG + p − dG −CGBC̄T θN+ = 0 (2b)

rL − dL −CLBC̄T θN+ = 0 (2c)

r0 −C0BC̄T θN+ = 0 (2d)

F ≤ BC̄T θN+ ≤ F (2e)

where Jj (·) : R→ R and Uj (·) : R→ R are the cost function of a

generator and the utility function of a load, respectively
1
. Assume

Jj (·) and Uj (·) are strictly convex and concave, respectively, and

continuously differentiable. F and F are the lower and upper thermal

limits on line flows, respectively. Basically (2a) aims to minimize

social cost (maximize social welfare) across the market. We make

the common assumption that EDP-1 is feasible and finite.

Define π := (πj , j ∈ N) as the net power injections at all buses.

Accordingly πG = rG+p−dG and πL = rL−dL . From (2b) and (2c),

πN+ = C̄BC̄
T θN+ , or equivalently θN+ = (C̄BC̄T )−1πN+ since B is

diagonal and C̄T is full column rank. Let HT
:= BC̄T (C̄BC̄T )−1 ∈

R |E |×( |N |−1)
be the power injection shift matrix of the power net-

work, then (2) can be equivalently rewritten as

EDP-2:
min

p,d

∑
j∈G

Jj (pj ) −
∑
j∈N+

Uj (dj ) (3a)

s.t. 1T
G
(rG + p − dG ) + 1TL (rL − dL ) + r0 = 0 (3b)

HT
G
(rG + p − dG ) + HT

L
(rL − dL ) ≥ F (3c)

HT
G
(rG + p − dG ) + HT

L
(rL − dL ) ≤ F (3d)

where (3b) imposes global power balance and (3c), (3d) separately

redescribe line flows with respect to nodal net power injections.

Introduce dual variables λ ∈ R, η− ∈ R
|E |
+ and η+ ∈ R

|E |
+ for (3b),

(3c) and (3d), respectively, and suppose (p∗,d∗) and (λ∗,η−∗,η+∗)
are primal-dual optimum, then canonical LMPs across buses j ∈ N+

are defined as λ∗1N+ −Hη−∗ +Hη+∗, which can also be interpreted

as weighted shadow prices in terms of (3b)-(3d). Given the LMPs,

(p∗,d∗), a market equilibrium that balances supply and demand

as well as maximizes social welfare, can be achieved by rational

market participants individually.

3 MARKET DYNAMICS
The control commands pC and dC in (1) are to be designed which

should reflect the rational market behavior of individual generators

and loads. In this section we describe a controller based on market

dynamics inspired by LMPs, present the underlying rationale, and

prove its ability to stabilize the power network.

3.1 Controller design
In particular, we characterize the market dynamics by

Ûλ = γ λ
(
−1T

G
(rG + p − dG ) − 1T

L
(rL − dL ) − r0

)
(4a)

Ûη− = Γη
−
[
F − HT

G
(rG + p − dG ) − HT

L
(rL − dL )

]+
η−

(4b)

Ûη+ = Γη
+
[
HT

G
(rG + p − dG ) + HT

L
(rL − dL ) − F

]+
η+

(4c)

pCj = λ − ωj + Hjη− − Hjη+ − J ′j (pj ) + pj +
ωj

Rj
, j ∈ G (4d)

dCj = U ′
j (dj ) − λ + ωj − Hjη− + Hjη+ + dj , j ∈ N+ (4e)

1
For simplicity we ignore the capacities of generators and loads, which can be implic-

itly imposed by property design of cost/utility functions [9]. Note that the capacity

constraints can also be incorporated through a projection method, see [14, 15].
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where γ λ , Γη
−

:= diag(γ
η−
j , j ∈ E) and Γη

+
:= diag(γ

η+
j , j ∈ E) are

positive constants or diagonal constant matrices. (4a)-(4c) are the

dynamics of dual Lagrange multipliers and proxies for the costs of

constraint violation. (4d), (4e) are adjustments of control commands

for generators and loads based on market updates. Specifically, we

define λ − ω + Hη− − Hη+ as dynamical locational marginal prices
(DLMPs), where λ (resp. −ω) prices global (resp. local) power imbal-

ance, andHη−−Hη+ prices line congestion. From (1b) and (4a)-(4c),

DLMPs are spatial-temporal variants that precisely embody market

evolution in response to real-time states of the power network.

Then (4d), (4e) combined with (1d), (1e) reveal a direct economic

interpretation that a generator (load) tends to augment (reduce)

production (consumption) if the DLMP exceeds its marginal cost

(utility); otherwise, it will curtail (increase) production (consump-

tion). This matches exactly with the rational behavior of market

participants.

To avoid measuring the power imbalance r , we can utilize (1b)-

(1d) to have replacements for rG + p − dG , rL − dL and r0 since

θ , ω and Ûω are readily observable in the current power system

operation. We highlight the controller implementation: (4a)-(4c)

require the local measurements of ωj , Ûωj and θ j at each bus as

well as (θk ,k : (j,k) ∈ E or (k, j) ∈ E) from all its neighbor buses

through neighborhood communications. (4d), (4e) necessitate the

bidirectional communication between each bus and a central market

operator to exchange system state information and DLMPs, which

can build on the existing market communication topologies.

3.2 Underlying algorithm
The market dynamics controller (4) is derived from a partial primal-

dual algorithm on the following problem:

EDP-3:

min

p,d, ˜θ ,ω

∑
j∈G

Jj (pj ) −
∑
j∈N+

Uj (dj ) +
∑
j∈N

D j

2

ω2

j (5a)

s.t. rG + p − dG − DGωG −CGB ˜θ = 0 (5b)

rL − dL − DLωL −CLB ˜θ = 0 (5c)

r0 − D0ω0 −C0B ˜θ = 0 (5d)

1T
G
(rG + p − dG ) + 1TL (rL − dL ) + r0 = 0 (5e)

HT
G
(rG + p − dG ) + HT

L
(rL − dL ) ≥ F (5f)

HT
G
(rG + p − dG ) + HT

L
(rL − dL ) ≤ F (5g)

At first sight, EDP-3 seems a combination of EDP-1 and EDP-2.

Similarly, we introduce dual variables µG ∈ R |G |
, µL ∈ R |L |

, µ0 ∈

R, λ ∈ R, η− ∈ R
|E |
+ and η+ ∈ R

|E |
+ for (5b)-(5g), respectively. For

compactness, let x := (p,d, ˜θ ,ω) ∈ R |G |+2 |N |+ |E |−1
, ν := (µ, λ) ∈

R |N |+1
and η := (η−,η+) ∈ R

2 |E |
+ . Then the Lagrangian of EDP-3

can be noted down as

L(x, ν, η) :=
∑
j∈G

Jj (pj ) −
∑
j∈N+

Uj (dj ) +
∑
j∈N

D j

2

ω2

j

+ µT
G

(
rG + p − dG − DGωG −CGB ˜θ

)
+ µT

L

(
rL − dL − DLωL −CLB ˜θ

)
+ µ0

(
r0 − D0ω0 −C0B ˜θ

)
+ λ

(
−1T

G
(rG + p − dG ) − 1T

L
(rL − dL ) − r0

)
+ η−T

(
F − HT

G
(rG + p − dG ) − HT

L
(rL − dL )

)
+ η+T

(
HT

G
(rG + p − dG ) + HT

L
(rL − dL ) − F

)
(6)

We also assume that EDP-3 is feasible and finite, which is actually

implied by the feasibility and finiteness of EDP-1, as we will show

later. This assumption allows us to use the Karush-Kuhn-Tucker

(KKT) conditions to characterize the optimality of EDP-3:

Theorem 3.1. (x∗,ν∗,η∗) is a primal-dual optimal solution to
EDP-3 if and only if p∗,d∗, ˜θ∗ are primal feasible, η−∗,η+∗ ≥ 0, and

µ∗ = ω∗ = 0 (7a)

p∗j = J ′−1

j (λ∗ − ω∗
j + Hjη−∗ − Hjη+∗), j ∈ G (7b)

d∗
j = U

′−1

j (λ∗ − ω∗
j + Hjη−∗ − Hjη+∗), j ∈ N+ (7c)

diag(η−∗)
(
F − HT

G
(rG + p∗ − d∗

G ) − HT
L
(rL − d∗

L )

)
= 0 (7d)

diag(η+∗)
(
HT

G
(rG + p∗ − d∗

G ) + H
T
L
(rL − d∗

L ) − F
)
= 0 (7e)

where J ′−1

j (·) and U ′−1

j (·) are the inverse functions of the derivatives
of Jj (·) andUj (·), respectively.

Note that by definition, J ′−1

j (·) andU ′−1

j (·) are both continuous and

monotone. With Theorem 3.1, EDP-3 is indeed an equivalent of

EDP-1 and EDP-2, which is formalized as

Theorem 3.2. Given a vector (p∗,d∗, ˜θ∗,ω∗) that satisfies ω∗ = 0,
˜θ∗ = C̄T θ∗

N+
and π∗

N+
= C̄BC̄T θ∗

N+
where π∗

G
= rG + p

∗ − d∗
G
and

π∗
L
= rL − d∗

L
, the following statements are equivalent:

• (p∗,d∗,θ∗
N+

) is an optimal solution to EDP-1;
• (p∗,d∗) is an optimal solution to EDP-2;
• (p∗,d∗, ˜θ∗,ω∗) is an optimal solution to EDP-3.

Theorem 3.2 allows us to look at EDP-3 as a proxy for EDP-1.

Let

L(x̃, ν, η) := min

ω
L(x, ν, η) (8)

where x̃ := (p,d, ˜θ ) ∈ R |G |+ |N |+ |E |−1
. From (6), the minimization

over ω basically aligns ω with µ, therefore

L(x̃, ν, η) :=
∑
j∈G

[
Jj (pj ) − (λ − µ j + Hjη− − Hjη+)pj

]
−

∑
j∈N+

[
Uj (dj ) − (λ − µ j + Hjη− − Hjη+)dj

]
−
∑
j∈N

[
(λ − µ j + Hjη− − Hjη+)r j +

D j

2

µ2

j

]
− ˜θT BCT µ + FT η− − F

T
η+

(9)

which is strictly concave in µ. Consider

L(x̃, ν̃, η) := max

µL ,µ
0

L(x̃, ν, η) (10)

where ν̃ := (µG , λ) ∈ R |G |+1
. The minimizers µ∗

L
(x̃ , ν̃ ,η) and

µ∗
0
(x̃ , ν̃ ,η) are unique due to the strict concavity and L(x̃ , ν̃ ,η) re-

mains strictly concave in µG .
The standard primal-dual gradient algorithm in the continuous

time domain for L(x̃ , ν̃ ,η) is
Û̃x = −Γx̃ ∇x̃ L(x̃, ν̃, η) (11a)

Û̃ν = Γν̃ ∇ν̃ L(x̃, ν̃, η) (11b)

Ûη = Γη
[
∇ηL(x̃, ν̃, η)

]+
η (11c)

where Γx̃ := diag(γ
p
j , j ∈ G,γdj , j ∈ N+,γ

˜θ
jk , (j,k) ∈ E), Γν̃ :=

diag(γ
µ
j , j ∈ G,γ λ) and Γη := diag(γ

η−
j , j ∈ E,γ

η+
j , j ∈ E) are posi-

tive constants or diagonal constant matrices. Note that µ plays the

role of the absent frequency ω above. Therefore, the procedures

(8), (10) and (11) correspond to the closed-loop system of the power

network dynamics (1) with the market dynamics controller (4). In
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particular, (8) enforces ω ≡ µ, and the unique minimizers of (10)

must satisfy
∂L
∂µL

(x̃ ,ν ,η) = 0 and
∂L
∂µ0

(x̃ ,ν ,η) = 0, which jointly

amount to (1c) and (1d). The λ-part of (11b) and (11c) are exactly

(4a)-(4c) in our controller. Let γ
p
j = 1/T

p
j , j ∈ G, and γdj = 1/Tdj ,

j ∈ N+, then the p,d-parts of (11a) appear when the control com-

mands (4d), (4e) are applied to the generator and load dynamics

(1e), (1f). Moreover, the
˜θ -part of (11a) and the µG-part of (11b) are

automatically carried out by the power network dynamics (1a) and

(1b) by setting γ
˜θ
jk = 1/Bjk , (j,k) ∈ E, and γ

µ
j = 1/Mj , j ∈ G.

The closed-loop system (1) and (4) represents a typical cyber-

physical system and implements an underlying partial primal-dual

gradient algorithm that solves EDP-3, an equivalent variant of the

market-clearing EDP-1. This embodies a market-aware controller

design as (4).

3.3 System stability
We formally show the market dynamics controller (4) is able to

stabilize the power network dynamics (1), i.e., eliminate power

imbalance, restore the nominal frequency, and maintain line flows

within thermal limits at equilibrium. First, define

I :=
{
(x̃, ν̃, η) | x̃ ∈ R|G|+|N|+|E |−1, ν̃ ∈ R|G|+1, η ∈ R

2|E |
+

}
The equilibrium of the closed-loop system (1) and (4) starting from

any initial point in I is characterized by the following theorem.

Theorem 3.3. For the closed-loop system (1) and (4) starting from
any initial point in I, a trajectory point (p∗,d∗,θ∗,ω∗, λ∗,η−∗,η+∗)

is its equilibrium if and only if (p∗,d∗, ˜θ∗,ω∗, µ∗, λ∗,η−∗,η+∗) is a
primal-dual optimal solution to EDP-3 with ˜θ∗ = CT θ∗ and ω∗ = µ∗.

Corollary 3.4. Every equilibrium point optimally solves EDP-3,
or equivalently EDP-1, which clears the ex-post power market in an
economically efficient way. Meanwhile, power balance is reestablished
over the network and the frequency is driven back to its nominal value
with line thermal constraints satisfied.

Next we proceed to show that given the initial condition of I,
the closed-loop system indeed converges to one equilibrium point.

Define E :=
{
(x̃ , ν̃ ,η) | Û̃x = 0, Û̃ν = 0, Ûη = 0

}
as the set of equilib-

rium points of (11) with initial points in I. Any point (x̃ , ν̃ ,η) ∈ E
also implies a unique equilibrium point of (1) and (4) with µ∗

L
(x̃ , ν̃ ,η),

µ∗
0
(x̃ , ν̃ ,η) and ω = µ, which also characterizes a primal-dual opti-

mal solution to EDP-3 by Theorem 3.3. Then we are able to conclude

the following theorem:

Theorem 3.5. The equilibrium set E of (11) is asymptotically
stable. In particular, starting from any initial point (x̃(0), ν̃ (0),η(0)) ∈
I, (x̃(t), ν̃ (t),η(t)) remains bounded for all t ≥ 0 and (x̃(t), ν̃ (t),η(t))
→ (x̃∗, ν̃∗,η∗) as t → ∞, where (x̃∗, ν̃∗,η∗) is one equilibrium point
in E.

Note that the initial condition of I requires only the cyber vari-

ables η−,η+ ≥ 0. It is readily realizable since in practice they corre-

spond to marginal congestion costs on lines that are always nonneg-

ative in power markets. Remarkably, no initial condition is required

on the power network states for the system to stabilize.
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Figure 1: Dynamics of (a) frequencies; (b) dynamical loca-
tional marginal prices (DLMP); (c) generations; (d) loads.

4 NUMERICAL RESULTS
We test our market dynamics controller on the IEEE 39-bus system

to illustrate its performance in secondary frequency control. In-

stead of the linear network model used for analysis, the numerical

tests adopt a high-fidelity nonlinear setup including second-order

turbine-governor dynamics, voltage dynamics and nonlinear power

flows. Randomly we pick a subset of three generators (at buses

30, 32 and 34) and two loads (at buses 25 and 26) to participate

in the ex-post power market, and impose 1 pu (100 MW) of step

load increase at bus 30. Meanwhile, a subset of lines (#4, 19, 26) are

endowed with relatively small capacities such that the line thermal

constraints are binding. The efficacy of bus-variant DLMPs in guid-

ing generators and loads to perform secondary frequency control

is explicitly illustrated in Fig. 1. The market dynamics controller is

able to drive the power network to a steady state within roughly

40 seconds.

5 CONCLUSION
In this work we propose to utilize market dynamics as a controller

to stabilize power networks. Based on a linear model of swing equa-

tions, DLMPs that reflect temporal and spatial network states are

designed in an ex-post power market to steer the rational dynam-

ical behavior of generators and loads. We prove that the coupled

system of power networks and market dynamics asymptotically

converges to an equilibrium point that clears the market, restores

the nominal frequency and maintains line flows within thermal

limits. The performance of our controller is demonstrated through

numerical tests on a nonlinear simulator.
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A APPENDIX
A.1 Derivation of B
Here all variables are in their nominal values. Deviations will be

represented by adding ∆. Consider the generic expression for a real

line flow Pjk :

Pjk = |Vj | |Vk |
(
−дjk cos(θ j − θk ) − bjk sin(θ j − θk )

)
(12)

where дjk :=
r jk

r 2

jk+x
2

jk
and bjk :=

−x jk
r 2

jk+x
2

jk
denote the corresponding

conductance and susceptance of line (j,k), respectively. Since we
assume r jk = 0, (12) reduces to

Pjk =
|Vj | |Vk |

x jk
sin(θ j − θk ) (13)

If there is a small disturbance ∆θ in bus phase angles, the line flow

evolves accordingly:

Pjk + ∆Pjk =
|Vj | |Vk |

x jk
sin((θ j + ∆θ j ) − (θk + ∆θk )) (14)

By applying the Taylor series to the right-hand side at the nominal

phase angles and ignoring the high-order terms, we can rewrite

(14) as

Pjk + ∆Pjk =
|Vj | |Vk |
x jk

[
sin(θ j − θk ) + cos(θ j − θk )(∆θ j − ∆θk )

]
(15)

Combining (13) and (15) leads to the linearized line flow model in

(1):

∆Pjk =
|Vj | |Vk |

x jk
cos(θ j − θk )(∆θ j − ∆θk ) (16)

i.e., Bjk :=
|Vj | |Vk |
x jk

cos(θ j − θk ). □

A.2 Proof of Theorem 3.1
By assumption, there exists an finite solution to EDP-3. Since all

its constraints are affine, Slater’s condition is satisfied and strong

duality holds. The KKT conditions are then both sufficient and

necessary to characterize the primal-dual optimal solutions to EDP-

3. Therefore, (x∗,ν∗,η∗) is primal-dual optimal if and only if

• Primal feasibility: (5b)-(5g).
• Dual feasibility: η−∗,η+∗ ≥ 0.

• Stationarity: ∇pL(x∗,ν∗,η∗) = 0, ∇dL(x
∗,ν∗,η∗) = 0,

∇
˜θL(x

∗,ν∗,η∗) = 0, ∇ωL(x
∗,ν∗,η∗) = 0.

• Complementary slackness: (7d), (7e).
The first two stationarity conditions give (7b), (7c). The third

stationarity condition requires

∂L

∂ ˜θ jk
(x∗,ν∗,η∗) = Bjk (µ

∗
j − µ∗k ) = 0, (j,k) ∈ E (17)

Considering Bjk > 0, we have µ∗j = µ∗k , (j,k) ∈ E. Since the graph

(N , E) is connected, naturally µ∗j = α , j ∈ N , where α is a constant.

Meanwhile, the fourth stationarity condition implies

∂L

∂ωj
(x∗,ν∗,η∗) = D jω

∗
j − D j µ

∗
j = 0, j ∈ N (18)

Considering D j > 0, we have µ∗j = ω∗
j , j ∈ N . Therefore, ωj = α ,

j ∈ N , as well.

From (5e) and the above observation, summing up (5b)-(5d) over

rows leads to

∑
j ∈N D jωj = α

∑
j ∈N D j = 0, which implies α = 0,

i.e., µ∗ = ω∗ = 0 as (7a) suggests. Therefore, the KKT conditions

are fully captured in Theorem 3.1. □

A.3 Proof of Theorem 3.2
EDP-1 → EDP-2:

Given an optimal solution (p∗,d∗,θ∗
N+

) to EDP-1, assume (p∗,d∗)

is not an optimal solution to EDP-2. Then there exists (p̂, ˆd) that
satisfies (3b)-(3d) and meanwhile has a strictly smaller objective

function value, i.e.,

∑
j ∈G Jj (p̂j ) −

∑
j ∈N+ Uj ( ˆdj ) <

∑
j ∈G Jj (p

∗
j ) −∑

j ∈N+ Uj (d
∗
j ). Let

ˆθN+ := (C̄BC̄T )−1π̂N+ with π̂G = rG + p̂ − ˆdG

and π̂L = rL− ˆdL . It is trivial to verify that (p̂, ˆd, ˆθN+ ) satisfies (2b)-
(2e) and is thus feasible for EDP-1 with a strictly smaller objective
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function value than (p∗,d∗,θ∗
N+

). However, this contradicts the

fact that (p∗,d∗,θ∗
N+

) is optimal with respect to EDP-1. Therefore,

(p∗,d∗) is an optimal solution to EDP-2.

EDP-2 → EDP-3:
Given an optimal solution (p∗,d∗) to EDP-2, assume (p∗,d∗, ˜θ∗ =

C̄T (C̄BC̄T )−1π∗
N+
,ω∗ = 0) is not an optimal solution to EDP-3.

Then there exists (p̂, ˆd,
ˆ
˜θ = C̄T (C̄BC̄T )−1π̂N+ , ω̂ = 0) that satis-

fies (5b)-(5g) and meanwhile has a strictly smaller objective func-

tion value, namely,

∑
j ∈G Jj (p̂j ) −

∑
j ∈N+ Uj ( ˆdj ) <

∑
j ∈G Jj (p

∗
j ) −∑

j ∈N+ Uj (d
∗
j ). Note that

˜θ is a function of p and d , thus
ˆ
˜θ may still

equal
˜θ∗ despite (p̂, ˆd) , (p∗,d∗). Apparently (p̂, ˆd) satisfies (3b)-

(3d) (the same as (5e)-(5g)) and is thus feasible for EDP-2 with a

strictly smaller objective function value than (p∗,d∗). However, this
contradicts the fact that (p∗,d∗) is optimal with respect to EDP-2.

Therefore, (p∗,d∗, ˜θ∗ = C̄T (C̄BC̄T )−1π∗
N+
,ω∗ = 0) is an optimal

solution to EDP-3.

EDP-3 → EDP-1:
Given an optimal solution (p∗,d∗, ˜θ∗,ω∗ = 0) to EDP-3, as-

sume (p∗,d∗,θ∗
N+

) is not an optimal solution to EDP-1 for arbitrary

θ∗
N+

that satisfies
˜θ∗ = C̄T θ∗

N+
. Then there exists (p̂, ˆd, ˆθN+ ) that

satisfies (2b)-(2e) and meanwhile has a strictly smaller objective

function value, i.e.,

∑
j ∈G Jj (p̂j ) −

∑
j ∈N+ Uj ( ˆdj ) <

∑
j ∈G Jj (p

∗
j ) −∑

j ∈N+ Uj (d
∗
j ). Note that

ˆ
˜θ := C̄T ˆθN+ may still equal

˜θ∗ despite

(p̂, ˆd) , (p∗,d∗). It follows from (2b)-(2d) that (p̂, ˆd,
ˆ
˜θ , ω̂ = 0) sat-

isfies (5b)-(5d) and naturally (5e) by summing (5b)-(5d) up. Write

ˆθN+ in terms of p̂ and
ˆd as

ˆθN+ = (C̄BC̄T )−1π̂N+ , where π̂G =

rG + p̂ − ˆdG and π̂L = rL − ˆdL , then it follows from (2e) that

(p̂, ˆd,
ˆ
˜θ , ω̂ = 0) also satisfies (5f), (5g). Therefore, (p̂, ˆd,

ˆ
˜θ , ω̂ = 0) is

feasible for EDP-3 with a strictly smaller objective function value

than (p∗,d∗, ˜θ∗,ω∗ = 0), which however is already optimal with

respect to EDP-3. The contradiction indicates that (p∗,d∗,θ∗
N+

)

is an optimal solution to EDP-1 for arbitrary θ∗
N+

that satisfies

˜θ∗ = C̄T θ∗
N+

. □

A.4 Proof of Theorem 3.3
Necessary condition:

Given an equilibrium point (p∗,d∗,θ∗,ω∗, λ∗,η−∗,η+∗), { Ûθ =
0, Ûω = 0} ↔ (7a), Ûp = 0 ↔ (7b) and

Ûd = 0 ↔ (7c). Therefore,

the stationarity conditions are satisfied.

With ω∗ = µ∗ = 0 and Ûω = Ûµ = 0, (1b)-(1d) imply (5b)-(5d),

respectively, if we set
˜θ∗ = CT θ∗. In addition,

Ûλ = 0 ↔ (5e). By the

definition of [·]+η , Ûη
− = 0 and Ûη+ = 0 imply (5f) and (5g), respectively.

Therefore, the equilibrium point is primal feasible.

Note that the trajectory starts from an initial point in I, then the

definition of [·]+η enforces η−(t),η+(t) ≥ 0 for all t ≥ 0. On this

basis, dual feasibility is guaranteed.

Finally, consider (5f) from primal feasibility. If the equality sign

holds, (7d) is satisfied. If the strict less-than sign holds, η− will be

driven to 0, thus satisfying (7d) as well. A similar argument applies

to (7e). Therefore, the complementary slackness conditions are also

met.

From above, (p∗,d∗, ˜θ∗,ω∗, µ∗, λ∗,η−∗,η+∗) is a primal-dual op-

timal solution to EDP-3 by Theorem 3.1.

Sufficient condition:
Given a primal-dual optimal solution (p∗,d∗, ˜θ∗,ω∗, µ∗, λ∗,η−∗,

η+∗) to EDP-3, as we have shown above, the stationarity conditions

(7a)-(7c) imply
Ûθ = 0, Ûω = 0, Ûp = 0 and

Ûd = 0. Then the primal

feasibility condition (5e) implies
Ûλ = 0. Finally, consider (5f): if the

equality sign holds, Ûη− = 0; if the strict less-than sign holds, η−∗ = 0

according to the complementary slackness condition (7d), then still

we have Ûη− = 0. A similar argument applies to Ûη+ = 0.

From above, (p∗,d∗,θ∗,ω∗, λ∗,η−∗,η+∗) is an equilibrium point.

□

A.5 Proof of Theorem 3.5
We focus on the trajectories that start with initial points in I. The
whole proof boils down to the proofs of the following three state-

ments:

Statement 1: Any trajectory (x̃(t), ν̃ (t),η(t)) converges to the largest
invariant set that satisfies ÛV (x̃(t), ν̃ (t),η(t)) = 0 between the on-off

switches of the projection [·]+η .

Consider the following Lyapunov function

V (x̃ , ν̃ ,η) =
1

2

(x̃ − x̃∗)T Γx̃
−1

(x̃ − x̃∗)

+
1

2

(ν̃ − ν̃∗)T Γν̃
−1

(ν̃ − ν̃∗) +
1

2

(η − η∗)T Γη−1
(η − η∗)

(19)

Its derivative with respect to time is

ÛV (x̃ , ν̃ ,η) = −∇x̃L(x̃ , ν̃ ,η)
T (x̃ − x̃∗) + ∇ν̃L(x̃ , ν̃ ,η)

T (ν̃ − ν̃∗)

+
[
∇ηL(x̃ , ν̃ ,η)

]+
η
T
(η − η∗)

≤ −∇x̃L(x̃ , ν̃ ,η)
T (x̃ − x̃∗) + ∇ν̃L(x̃ , ν̃ ,η)

T (ν̃ − ν̃∗)

+ ∇ηL(x̃ , ν̃ ,η)
T (η − η∗)

≤ L(x̃∗, ν̃ ,η) − L(x̃ , ν̃ ,η) + L(x̃ , ν̃ ,η) − L(x̃ , ν̃∗,η∗)

= L(x̃∗, ν̃ ,η) − L(x̃∗, ν̃∗,η∗) + L(x̃∗, ν̃∗,η∗) − L(x̃ , ν̃∗,η∗)

≤ 0

(20)

The first equality applies (11). The second inequality holds due to

the fact that [y]+u
T
(u − u∗) ≤ yT (u − u∗) for arbitrary vectors y,

u and u∗ ≥ 0. The third inequality arises from the convexity of

L(x̃ , ν̃ ,η) with respect to x̃ and its concavity with respect to (ν̃ ,η).
The last inequality holds since the equilibrium point (x̃∗, ν̃∗,η∗) is
also a saddle point of L(x̃ , ν̃ ,η).

Define the largest invariant set between the on-off switches of

the projection [·]+η by

S :=
{
(x̃ , ν̃ ,η) | ÛV (x̃(t), ν̃ (t),η(t)) = 0, t ∈ R+\T

}
(21)

where T consists of all the time epochs when the projections switch

between on and off. Since the Lyapunov function is radially un-

bounded, all trajectories will remain bounded. Moreover, as per the

invariance principle for Caratheodory systems [2], (x̃(t), ν̃ (t),η(t))
converges to S as t → ∞.

Statement 2: Any trajectory (x̃(t), ν̃ (t),η(t)) in the invariant set S
is an equilibrium point of the closed-loop system (1) and (4), i.e.,

S ⊆ E.
For any trajectory (x̃(t), ν̃ (t),η(t)) ∈ S, ÛV (x̃(t), ν̃ (t),η(t)) = 0

enforces

L(x̃(t), ν̃∗,η∗) = L(x̃∗, ν̃∗,η∗) = L(x̃∗, ν̃ (t),η(t)) (22)
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Differentiating the first equality of (22) with respect to time leads

to

ÛL(x̃(t), ν̃∗,η∗) = ∇x̃L(x̃(t), ν̃
∗,η∗)T Û̃x

= −∇x̃L(x̃(t), ν̃
∗,η∗)T Γx̃∇x̃L(x̃(t), ν̃

∗,η∗)

= 0

(23)

Since Γx̃ is positive definite, ∇x̃L(x̃(t), ν̃
∗,η∗) = 0. Therein

∇
˜θL(x̃(t), ν̃

∗,η∗)

= B(CT
G
µ∗
G
+CT

L
µ∗
L
(x̃(t), ν̃∗,η∗) +CT

0
µ∗

0
(x̃(t), ν̃∗,η∗))

= 0

(24)

and also note that [CT
L
,CT

0
] is full column rank as well as µ∗

G
= 0,

we obtain µ∗
L
(x̃(t), ν̃∗,η∗) = 0 and µ∗

0
(x̃(t), ν̃∗,η∗) = 0. In addition,

from (9) µ∗
L
(x̃(t), ν̃ (t),η(t)) and µ∗

0
(x̃(t), ν̃ (t),η(t)) actually depend

only on x̃(t), i.e.,

∇ν̃ µ
∗
G
(x̃(t), ν̃ (t),η(t)) = 0, ∇ηµ

∗
G
(x̃(t), ν̃ (t),η(t)) = 0

∇ν̃ µ
∗
0
(x̃(t), ν̃ (t),η(t)) = 0, ∇ηµ

∗
0
(x̃(t), ν̃ (t),η(t)) = 0

(25)

which implies µ∗
L
(x̃(t), ν̃ (t),η(t)) ≡ µ∗

L
= 0 and µ∗

0
(x̃(t), ν̃ (t),η(t))

≡ µ∗
0
= 0.

From above, ∇pL(x̃(t), ν̃
∗,η∗) = 0 and ∇dL(x̃(t), ν̃

∗,η∗) = 0 di-

rectly indicate

pj (t) ≡ p∗j = J ′−1

j (λ∗ − µ∗j + Hjη
−∗ − Hjη

+∗), j ∈ G

dj (t) ≡ d∗j = U
′−1

j (λ∗ − µ∗j + Hjη
−∗ − Hjη

+∗), j ∈ N+
(26)

Similarly, differentiating the second equality of (22) with respect

to time leads to

∇ν̃L(x̃
∗, ν̃ (t),η(t))T Γν̃∇ν̃L(x̃

∗, ν̃ (t),η(t))

+ ∇ηL(x̃
∗, ν̃ (t),η(t))T Γη

[
∇ηL(x̃

∗, ν̃ (t),η(t))
]+
η = 0

(27)

Since both Γν̃ and Γη are positive definite and the second term on

the left-hand side is nonnegative, we obtain ∇ν̃L(x̃
∗, ν̃ (t),η(t)) = 0.

Therein

∇λL(x̃
∗, ν̃ (t ), η(t )) = −1T

G
(rG + p∗ − d∗

G
) − 1T

L
(rL − d∗

L
) − r0

= −1T
G
(rG + p(t ) − dG(t )) − 1T

L
(rL − dL (t )) − r0

=
Ûλ

γ λ

= 0

(28)

As a consequence,
Ûλ = 0 and λ(t) ≡ ˆλ for some constant

ˆλ. Moreover,

∇µGL(x̃
∗, ν̃ (t),η(t)) = 0 implies

rG + p
∗ − d∗

G
− DGµG(t) −CGB ˜θ∗ = 0 (29)

and the minimizers µ∗
L
(x̃∗, ν̃ (t),η(t)) and µ∗

0
(x̃∗, ν̃ (t),η(t)) of (9)

imply

rL − d∗
L
− DLµ

∗
L
−CLB ˜θ∗ = 0

r0 − D0µ
∗
0
−C0B ˜θ∗ = 0

(30)

Summing up (29) and (30) and comparing with (28) readily yield

µG(t) ≡ µ∗
G
= 0. It follows from µ(t) = 0 that

Û̃
θ = CT µ(t) = 0.

Last but not least, since p(t) = p∗ and d(t) = d∗, the term in the

projection of (4b), β := F−HT
G
(rG+p(t)−dG(t))−H

T
L
(rL−dL(t)) ∈

R |E |
, is also constant. Consider one arbitrary line (j,k) ∈ E, if

βjk > 0, then Ûη−jk > 0 which indicates η−jk (t) → ∞. This contradicts

the fact that all trajectories are bounded and thus βjk ≤ 0. In the

case of βjk = 0, obviously Ûη−jk ≡ 0. In the other case of βjk < 0,

η−(t) ≡ 0 is imposed according to the definition of the projection

and the initial condition of I. Again, Ûη−jk ≡ 0. A similar argument

yields Ûη+jk ≡ 0 correspondingly.

So far we have shown any trajectory (x̃(t), ν̃ (t),η(t)) ∈ S satisfies
Û̃x = 0,

Û̃ν = 0 and Ûη = 0, and therefore (x̃(t), ν̃ (t),η(t)) ∈ E, which
implies S ⊆ E.
Statement 3: Each trajectory (x̃(t), ν̃ (t),η(t)) literally converges to
a single equilibrium point in E.

As discussed above, (x̃(t), ν̃ (t),η(t)) → S and (x̃(t), ν̃ (t),η(t)) re-
mains bounded, thus there exists an infinite sequence of time epochs

{tk ,k = 1, 2, . . . } such that as k → ∞, (x̃(tk ), ν̃ (tk ),η(tk )) →

(x̃∗S , ν̃
∗
S ,η

∗
S ) ∈ S. This specific (x̃∗S , ν̃

∗
S ,η

∗
S ) certainly lies in E and

is used in the definition of the Lyapunov functionV (·). SinceV (·) is

quadratic in (x̃(t), ν̃ (t),η(t)), it is lower bounded byV (x̃∗S , ν̃
∗
S ,η

∗
S ) =

0. Note that V (·) is nonincreasing in t , thus V (t) → V (x̃∗S , ν̃
∗
S ,η

∗
S ).

Due to the continuities of V (·) in (x̃ , ν̃ ,η) and (x̃(t), ν̃ (t),η(t)) in t ,
naturally (x̃(t), ν̃ (t),η(t)) → (x̃∗S , ν̃

∗
S ,η

∗
S ), i.e., (x̃(t), ν̃ (t),η(t)) con-

verges to only one equilibrium point in S ⊆ E.
Conclusion: The above three statements jointly complete the proof

of Theorem 3.5. □
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