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Abstract— This paper formulates an optimal station assign-
ment problem for electric vehicle (EV) battery swapping that
takes into account both temporal and spatial couplings. The
goal is to reduce the total EV cost and station congestion due
to temporary shortage in supply of available batteries. We show
that the problem is reducible to the minimum weight perfect
bipartite matching problem. This leads to an efficient solution
based on the Hungarian algorithm. Numerical results suggest
that the proposed solution provides a significant improvement
over a greedy heuristic that assigns nearest stations to EVs.

I. INTRODUCTION

Transportation emits a large amount of greenhouse gases,

e.g., about a quarter of all greenhouse gases in the US [1],

[2]. Electrification will greatly reduce the carbon footprint of

transportation especially with increasing renewable genera-

tion of electricity. EVs are large loads that can add significant

stress to electricity grids, but they are also flexible loads

that can help mitigate the volatility of renewable generation

through smart charging. There has been a large literature on

the optimization of EV charging, e.g. [3]–[10]. EV charging

however takes a long time. It is not suitable for commercial

vehicles, such as taxis, buses, and ride-sharing cars, that are

on the road most of the time, the opposite of most private

cars.

An alternative EV refueling method is battery swapping

where an EV swaps its depleted battery for a fully-charged

battery at a service station.1 This can be done in a few

minutes. Several such electric taxi programs are in pilot in

China [11]. The literature on EV battery swapping is small.

In [12] the operation of a battery charging and swapping

station is modeled as a mixed queuing network, consisting of

an interior closed queue of batteries going through charging

and swapping, and an exterior open queue of EV arrivals.

Using this model, [13] proposes an optimal charging policy.

An optimal assignment problem is formulated in [14], [15]

that assigns to a given set of EVs best stations to swap

their batteries based on their current locations and states of

charge. The assignment aims to minimize a weighted sum

of total travel distance and generation cost over both station

assignments and power flow variables, subject to EV range
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1In this paper, stations refer to battery (swapping) stations.

constraints, grid operational constraints and AC power flow

equations. While [14], [15] focus on spatial optimization over

power grid operation within a single time slot, this paper

focuses instead on temporal optimization where EVs arrive

over several time slots.

Specifically, we adopt a discrete time model [16]. In each

time slot, a centralized operator optimally assigns stations to

a set of EVs that need battery swapping. Consider the optimal

station assignment problem at time slot 1 where stations are

assigned in a way that minimizes both the total EVs’ cost to

travel to their assigned stations and the total congestion (bat-

tery shortage) levels at these stations. The current assignment

at time slot 1 will determine the EV arrival processes, and

hence the congestion levels, at the stations in the future and in

turn needs to take into account congestion due to EV arrivals

at these stations that were scheduled before time slot 1. The

problem is a binary program with strong temporal and spatial

couplings. We show that it is polynomial-time solvable by

reducing it to the standard minimum weight perfect bipartite

matching problem. This leads to a solution based on the

Hungarian algorithm for bipartite matching problems. We

present numerical results that demonstrate that the proposed

solution provides a significant benefit over a greedy heuristic

that assigns to each EV its nearest station.

The remainder of this paper is structured as follows.

Section II formulates the optimal station assignment prob-

lem for EV battery swapping, followed by the proposed

polynomial-time solution in Section III. Section IV validates

the theoretical analysis via numerical results, while Section V

concludes.

II. PROBLEM FORMULATION

Consider a group of EVs, e.g., a fleet of electric taxis,

with swappable batteries that swap their depleted batteries for

fully-charged ones at stations assigned by a central operator.

Time is slotted with a constant length, e.g., 10 minutes.

Without loss of generality, fix the current time slot as time

slot 1 of the time horizon T := {−Tm+1, . . . , 0, 1, . . . , Tm},
and let T+ := {1, . . . , Tm}, which is the segment of T from

the current time slot on. Correspondingly, T\T+ refers to

past time slots. Tm is a constant which we will interpret

later. Suppose there is a set J := {1, . . . , J} of stations

that provide battery swapping service for EVs. Denote the

current number of (fully-charged) batteries that are available

for swapping as n0
j at station j.

At the current time slot 1, let I := {1, . . . , I} be the

set of EVs that require battery swapping. Our goal is to

optimally assign a station j ∈ J to each EV i ∈ I,
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such that a weighted sum of aggregate EV cost and station

congestion is minimized. Note that if future information is

somehow available, joint optimization of station assignments

over multiple time slots can be easily accommodated.

A. Decision variables, states, and constraints

Let M := (Mij , i ∈ I, j ∈ J) represent the station
assignment to EVs,2 where

Mij =

{
1 if station j is assigned to EV i

0 otherwise

We require that only one station be assigned to each EV, i.e.,⎧⎨
⎩

∑
j∈J

Mij = 1, i ∈ I

Mij ∈ {0, 1}, i ∈ I, j ∈ J

(1)

Note that we also use Mij(t), t = −Tm+1,−Tm+2, . . . , 0,

to represent past assignments, which are given. They affect

the current assignment and are parameters in the problem

formulation.

Let τ(σ, δ, t) estimate the arrival time of an EV if it

starts to travel at time slot t from origin σ to destination

δ; thus τ(σ, δ, t) ≥ t. It captures the time-dependent traffic

conditions and in practice we largely care about τ(σ, δ, 1)
that captures the real-time traffic information. Meanwhile,

τ(σ, δ, 1) also corresponds to an optimal routing based on

the current traffic conditions, thus we can readily obtain the

associated travel distance from σ to δ, denoted by d(σ, δ, 1).
Note that the current estimates τ(σ, δ, 1) and d(σ, δ, 1) are

available by resorting to, say, Google Maps. Their explicit

modeling goes beyond the scope of this paper, thus we

assume they are exogenous and given. On this basis, if EV

i starts at time slot t, by defining its position as σi and

the location of station j as δj , it is expected to travel the

distance of dij(t) := d(σi, δj , t) and arrive at a future time

slot τij(t) := τ(σi, δj , t) at station j, thus reducing the

available batteries at time slot τij(t) by 1. We also define

τ−1
ij (t) as the inverse function of τij(t), i.e., τ−1

ij (t) is the

time slot when station j was assigned to EV i that arrives at

time slot t. For brevity, let τij := τij(1) and dij := dij(1).
Note that τij is also the travel time of EV i if it currently

sets off to station j.

Now we interpret Tm as the maximum travel time of an

EV to reach a station, i.e., Tm := maxi,j,t(τij(t)−t+1). Tm

is tightly bounded as an EV that requires battery swapping

is running out of energy and its maximum driving range is

limited. The assignments before −Tm + 1 are summarized

in n0
j , and the states of stations after Tm will not be directly

affected by the current assignment.3

Let nj(t) denote the number of available batteries at
station j at the end of time slot t, which is the station state.
In particular, nj(0) = n0

j . Hence nj(t) increases by 1 when

2More precisely, Mij should be Mij(1) that denotes a current decision
variable. We drop the notation of the current time slot for brevity.

3As shown later, they are affected through nj(Tm), which will be
captured.

a battery at station j becomes fully-charged, and decreases
by 1 when a fully-charged battery is removed by an EV:

nj(t) = nj(t− 1) + cj(t)−
∑
i∈Ip

Mij(τ
−1
ij (t))

−
∑
i∈I

Mij · 1(t = τij), t ∈ T
+

(2)

where cj(t) is the number of batteries that become fully-

charged at station j in time slot t (which is known a priori),

and Ip is the set of all past EVs that were assigned stations

during the time interval [−Tm + 1, 0]. 1(x) is an indicator

function for the predicate x. The third and fourth terms on

the right-hand-side of (2) summarize the impacts of past

assignments and the current one, respectively, on the number

of available batteries at station j at time slot t. The second

and third terms are both given while the fourth one is to

be decided. Moreover, past assignments have no effect on

nj(Tm) by definition, i.e., Mij(τ
−1
ij (Tm)) = 0, i ∈ Ip, j ∈ J.

Note that nj(t) can be negative. For instance, nj(t) = 5
means that, at the end of time slot t, there will be 5 available

batteries left after serving EVs that arrive at station j at time

slot t; nj(t) = −3 means there will be no available battery

but 3 waiting EVs.
An EV can only be assigned a station within its driving

range, i.e.,
dijMij ≤ rsi, i ∈ I, j ∈ J (3)

where r is the driving range per unit state of charge and si
denotes the state of charge of EV i.

B. Optimal station assignment problem
The system cost has two components. First, a cost αij is

incurred if station j is assigned to EV i, thus the cost of EV

i is
∑

j∈J
αijMij . For example, αij can be a weighted sum

of EV i’s travel distance and time from its current location

to station j. Second, as explained above, 〈−nj(t)〉+ is the

number of waiting EVs at the end of time slot t, where

〈x〉+ := max{x, 0}.
Let n := (nj(t), j ∈ J, t ∈ T

+) be the vector of station
states. We are interested in the following optimal station
assignment problem:

min
M,n

∑
i∈I

∑
j∈J

αijMij +
∑
j∈J

∑
t∈T+

〈−nj(t)〉+ (4)

s.t. (1), (2), (3)

which minimizes the weighted sum of aggregate EV cost and

station congestion, subject to EVs’ driving ranges.

III. POLYNOMIAL-TIME SOLUTION

The optimal station assignment problem (4) is a binary

program with temporal couplings in (2) and spatial couplings

implied in station congestion. It can however be solved

efficiently.
Theorem 1: The optimal station assignment problem (4)

is polynomial-time solvable.
We prove the theorem in two steps. We first reformulate

problem (4) in Section III-A into a more convenient mixed

integer linear program (MILP), and then show in Section

III-B that it is reducible to the problem of minimum weight

perfect bipartite matching.
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A. Reformulation as MILP

Note that all the constraints in (4) are linear in the variables

(M,n). The only nonlinearity is 〈−nj(t)〉+, which can be

removed by introducing an auxiliary variable vj(t) to replace

aggregate station congestion by
∑

j

∑
t vj(t) and requiring

vj(t) to satisfy the linear constraints vj(t) ≥ 0 and vj(t) ≥
−nj(t). Hence (4) is an MILP.

To reformulate it into a more convenient form, denote the

number of available batteries at station j over T
+ observed

at time slot 1 before the current decision M is made by:

ñj(t) := nj(0) +

t∑
κ=1

(cj(κ)−
∑
i∈Ip

Mij(τ
−1
ij (κ))), t ∈ T

+

It is a known constant determined by past assignments. The
evolution of nj(t) in (2) then reduces to

nj(t) = ñj(t)−
∑
i∈I

Mij · 1(t ≥ τij), t ∈ T
+

(5)

which is decoupled across time slots, because ñj(t) and the

indicator function in (5) remove the dependency of nj(t) on

nj(t− 1).
The interpretation of Mij · 1(t ≥ τij) in (5) is as follows.

If station j is assigned to EV i at time slot 1, then it will

arrive there at time slot τij , thus removing one available

battery from station j for time slot τij and every time slot

afterwards. For each station j ∈ J, define an arrival matrix

Aj ∈ {0, 1}Tm×I such that its (t, i) entry is

Aj(t, i) := 1(t ≥ τij)

For example, if the ith column of Aj is [0 0 1 1]T , it means

EV i will arrive at station j at time slot τij = 3, thus

removing an available battery for time slots t = 3, 4. Finally,

let Π denote the set of M with Mij = 0 if station j is outside

EV i’s driving range, i.e., dij > rsi.
Putting the above together, (4) is then equivalent to the

following MILP:

min
M∈Π,v≥0

∑
j∈J

∑
i∈I

αijMij +
∑
j∈J

∑
t∈T+

vj(t) (6)

s.t.
∑
j∈J

Mij = 1, i ∈ I

vj(t) ≥ −ñj(t) +
∑
i∈I

Aj(t, i)Mij , j ∈ J, t ∈ T
+

To gain some intuition, consider the case where every

station j faces heavy congestion, i.e. ñj(t) ≤ 0. Then the

inequality in the MILP will be tight in optimality. An optimal

assignment is: for each i ∈ I,

M∗
ij =

⎧⎨
⎩
1, j = j∗ := arg min

j:dij≤rsi
αij +

∑
t∈T+

Aj(t, i)

0, j ∈ J\{j∗}
(7)

Note that j∗ may not be unique, and ties are broken

arbitrarily. Minimizing αij favors a nearest station, while

minimizing
∑

t∈T+ Aj(t, i) favors a station with the latest

time of arrival to avoid further congestion. Hence (7) strikes

a compromise.
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Fig. 1. An example of a perfect bipartite matching between the set of EVs
and the set of batteries. The eventual assignment from the perfect bipartite
matching is based on the subset of matches between real EVs and certain
batteries. As the figure illustrates, dummy EVs can never have priority over
real EVs for matching real batteries.

B. Reduction to Bipartite Matching

We now show that the MILP (6) can be further reduced

to the minimum weight perfect bipartite matching problem,

which is well known to be polynomial-time solvable. The

intuition is that we let the EVs and individual batteries (not

stations) be vertices on each bipartition, respectively, and

assign a weight to each pair based on the contribution of the

pair’s matching to the objective value of (6).
Define a bipartite graph G = (A ∪ B,E), where A and B

are the bipartition of the vertex set and E ⊆ A×B is the set
of edges that are endowed with given weights ω := (ωab, a ∈
A, b ∈ B, (a, b) ∈ E), as shown in Fig. 1. Without loss of
generality, we assume G is complete and balanced as we can
add infinite-weight edges and dummy vertices as necessary.
Let N := |A| = |B|. The standard minimum weight perfect
matching problem defined on G is

min
x

∑
(a,b)∈E

ωab xab (8)

s.t.
∑
b

xab = 1, a ∈ A

∑
a

xab = 1, b ∈ B

xab ∈ {0, 1}, a ∈ A, b ∈ B

where x := (xab, a ∈ A, b ∈ B). Hence an instance of the

bipartite matching problem (8) is specified by nodes A, B

and the weights ω.

Given an instance of the MILP (6), we now construct an

instance of the bipartite matching problem (8) such that an

optimal solution to (8) yields an optimal solution to (6).

• A := I∪ Ĩ∪ I
d. Ĩ is the set of EVs that were previously

assigned stations, but have yet to have their batteries

swapped (either on the way or waiting at stations). Id

is the set of dummy EVs if necessary to make A and

B balanced.

• B :=
⋃

j∈J
Bj ∪ B

d. Bj is the set of available batteries

at station j, including not only the currently available

batteries, but also those that will become available in

T
+. The time slot when battery b ∈ Bj becomes
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available is denoted as ρb, and ρb = 0 for the currently

available batteries. Bd is the set of dummy batteries if

necessary to make A and B balanced.

Remark 1: It is necessary to include Ĩ, which comes from

past assignments. Each EV a ∈ Ĩ, while previously matched

with a battery, currently only has a target station but no target

battery. This is because battery matching is artificial for the

purpose of an efficient solution to (6), and our original model

still implies first-come, first-served. Consequently, EVs in I

that arrive earlier will snatch batteries and may cause EVs

in Ĩ to wait. This is captured in (6). To maintain consistency,

we include Ĩ in A, but restrict these EVs’ matchings only

with batteries at their originally assigned stations.

Remark 2: I
d and B

d are introduced to balance the bipar-

tite graph. Note that nj(t) can be negative in (6). We have

to make up the shortfall when |I ∪ Ĩ| > |Bj | for station j
by adding dummy batteries. More precisely, Bd :=

⋃
j∈J

B
d
j ,

where |Bd
j | = max{|I ∪ Ĩ| − |Bj |, 0}. Then I

d with |Id| =
|⋃j∈J

(Bj∪Bd
j )|−|I∪Ĩ| is added to maintain balance between

A and B.

The nonnegative weight ωab of the match (a, b) corre-

sponds to the incremental cost added to the objective of (6)

if station j which battery b belongs to is assigned to EV a.

To determine ωab, the main idea is to translate the congestion

of stations to the waiting time each EV suffers.

1) a ∈ I, b ∈ Bj . Set ωab := αab + max{ρb − τab, 0}.4
Here, αab is the cost of EV a and max{ρb − τab, 0} is

the time length for which it has to wait until battery b
becomes available. If dab > rsa, then ωab :=∞.

2) a ∈ I, b ∈ B
d
j . Dummy batteries exist when there is

a deficit in batteries to match all real EVs perfectly at

station j. EVs matched with dummy batteries will wait

until the end of T
+ after their arrivals. Hence ωab :=

αab + (Tm + 1− τab). If dab > rsa, then ωab :=∞.

3) a ∈ Ĩ, b ∈ Bj . We require that EVs a ∈ Ĩ stick to their

original stations. To this end, if station j is originally

assigned to EV a, ωab := max{ρb− τab, 0}; otherwise,

ωab := ∞. The EV cost is excluded since it does not

contribute to the objective of (6).

4) a ∈ Ĩ, b ∈ B
d
j . Likewise, EVs a ∈ Ĩ are required to

match dummy batteries at their original stations. Hence

if station j is originally assigned to EV a, ωab := Tm+
1− τab; otherwise, ωab :=∞.

5) a ∈ I
d, b ∈ Bj . Dummy EVs do not really exist, and

should have no impact on the match result. Thus we

have ωab := 0.

6) a ∈ I
d, b ∈ B

d
j . Likewise, ωab := 0.

From above, the parameters of (8) including N and
(ωab, a ∈ A, b ∈ B) can be computed in time of O(N2)
given an instance of (6). On the other hand, if we have
an optimal matching x∗ for (8), an optimal assignment is
straightforward:

M∗
ij =

∑
b∈Bj∪Bd

j

x∗ib, i ∈ I, j ∈ J (9)

4αab, dab, τab and αaj , daj , τaj are used interchangeably when a ∈
I ∪ Ĩ, b ∈ Bj ∪ Bd

j .

which is obtainable in time of O(N).
Hence the optimal station assignment problem (4) is

reduced to the minimum weight perfect bipartite matching

problem (8). This proves Theorem 1.

C. Hungarian algorithm

The minimum weight bipartite matching problem (8) can

be solved efficiently. For completeness, we sketch one ver-

sion of the Hungarian algorithm as its solution [17].

For each edge (a, b) ∈ E, define the reduced weight by

ωr
ab = ωab − pa − pb, where p := (pv, v ∈ A ∪ B) is called

a price vector indexed by vertices.
Sufficient condition of optimality: If x is a perfect

matching in G, and both the following hold:

ωr
ab ≥ 0, ∀(a, b) ∈ G (10a)

ωr
ab = 0, ∀(a, b) ∈ x (10b)

then x is a minimum weight perfect matching.5

See [18] for its proof. The condition suggests two invari-

ants that we will maintain to compute an optimal solution.

We initialize a matching x = ∅ and a price vector p with

pv = 0, v ∈ A ∪ B, which satisfy (10).

Definition 1: Given a matching x and a price vector p,

define a path P from a ∈ A to b ∈ B as a good path if

1) both endpoints a and b have not been matched in x;

2) P alternates edges out of x with those in x;

3) every edge in P is tight, i.e., has zero reduced weight.

According to the definition of a good path, it must include

an odd number of edges with the first and last ones out of

x. The significance of good paths lies in that they enable

us to increase the cardinality of x while maintaining both

invariants.

Step 1: Matching augmentation:

Given a good path P , x = x⊕ P .
Here ⊕ denotes the symmetric difference, i.e., x ⊕ P :=

(x\P ) ∪ (P\x). To see how the matching augmentation

works, we can consider it as removing from x the edges that

also belong to P and adding in the ones from P that are not

in x. Recall that a good path is x-alternating with the first and

last edges out of x by definition, thus |P\x| = |P ∩ x|+ 1,

i.e., the path augmentation increases the cardinality of x by

1. The two invariants still hold since no reduced weight has

changed and all edges in P are tight. After at most N such

augmentations, a perfect matching can be attained.

In order to search for a good path efficiently, breadth-

first search (BFS) with the enforcement of x-alternation is

applied. Given the current matching x, we start a graph

search from the first unmatched vertex of A, which is defined

as layer 0 of the search tree. Recall the definition of a good

path, only tight edges are considered to compose P . Hence

we obtain layer 1 of vertices in B from layer 0 by BFS.

Note that if any vertex in layer 1 is unmatched in x, we are

done and have an one-edge good path. Otherwise, instead

of BFS, in layer 2 we include only vertices matched with

those in layer 1 since P has to be x-alternating. Then in any

5We abuse x to denote the set of edges that link the matches in x.
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tight edge
edge in matching

layer 0 layer 1 layer 2 layer 4

stuck

good path

Fig. 2. An illustrative example of searching for a good path.

odd layer we switch back to BFS, and in any even layer we

enforce x-alternation, until either we attain a good path in

an odd layer or we are stuck in an even layer. See Fig. 2 for

an illustrative example.

There is a possibility that the search fails to return a good

path of odd length that links two unmatched vertices and

gets stuck in an even layer. Under this circumstance, we

will maintain the current matching x and update the price

vector p in a way that gives rise to a good path. First define

S ⊆ A as the set of vertices that appear in the even layers

of the search tree and N(S) ⊆ B as the set of neighbors of

vertices in S only via tight edges. N(S) also means the set

of vertices that appear in the odd layers of the search tree,

since every vertex in an odd layer found by BFS belongs to

N(S) by definition and every vertex in N(S) is bound to be

reached in the search tree, which is only stuck in an even

layer when BFS has no tight edge to explore.

Definition 2: S is defined as a good set for two features:

1) S has an unmatched vertex, i.e. the vertex in layer 0;

2) Each vertex in N(S) is matched with one in S by x.

Step 2: Price update:
Given a good set S, as well as N(S),

pv =

{
pv +Δ, v ∈ S

pv −Δ, v ∈ N(S)

where Δ is the largest possible value subject to invariants,

as explained later.

It can be verified that

1) ωr
ab remains constant for edge (a, b) with a /∈ S and

b /∈ N(S);
2) ωr

ab remains constant for edge (a, b) with a ∈ S and

b ∈ N(S);
3) ωr

ab increases by Δ for edge (a, b) with a /∈ S and

b ∈ N(S);
4) ωr

ab decreases by Δ for edge (a, b) with a ∈ S and

b /∈ N(S).

Recall that if either endpoint of an edge in x is reached in

the search tree, both endpoints are reached. Thus each edge

in x can only be categorized to either the first or second

case, and its reduced weight sticks to 0, which guarantees

(10a). In terms of (10b), the third case has no effect, but

the fourth one is potentially hazardous in that the reduced

weights of some edges may be negative after going down

by Δ. To maintain (10b), Δ is therefore set to the largest

possible value that zeros out the reduced weight of an edge

belonging to the fourth case while keeping those of others

nonnegative. Note that Δ > 0 since in this case none of the

edges is tight.

The search tree regrows as a newly tight edge from the

price update is added. Suppose edge (a, b) is the newly tight

edge, when we search again from the same unmatched ver-

tex, same branches are still explored since edges along them

are still tight. Thus the search tree will remain unchanged

until vertex a is reached. Then the originally stuck path that

ended at vertex a can be now extended, since a new branch

linked by edge (a, b) is additionally found by BFS. In this

sense, each price update makes progress towards a good path,

and such progress required is finite, i.e., at most N price

updates for the N vertices in B.

The Hungarian algorithm is summarized in Algorithm 1.

We just need to augment x N times from ∅ to a perfect

matching, and in each augmentation there are at most N
price updates to include all vertices of B in the search tree.

Since each iteration mainly consists of BFS and computing

Δ, both of which can be implemented within time of O(N2),
the Hungarian algorithm has a time complexity of O(N4).

Algorithm 1: Hungarian algorithm

1 Input: G = (A ∪ B,E), and ω;
2 Output: x;
3 Initialization: x ← ∅, and pv ← 0, v ∈ A ∪ B;
4 while x is not perfect do
5 start a search tree with the first unmatched vertex a ∈ A, and mark layer

k ← 0;
6 while the tree is not stuck and no other unmatched vertex is found do
7 if k is even then
8 attain layer k + 1 via tight edges by BFS;
9 k ← k + 1;

10 else
11 attain layer k + 1 via matches in x;
12 k ← k + 1;
13 end if
14 end while
15 if an unmatched vertex b ∈ B is found then
16 the path P from a to b is good;
17 x ← x ⊕ P ;
18 else
19 pv ← pv + Δ for vertices v in the even layers;
20 pv ← pv − Δ for vertices v in the odd layers;
21 (the largest possible Δ subject to invariants)
22 end if
23 end while
24 return x.

IV. NUMERICAL RESULTS

We illustrate with a case study. Suppose currently there

are I = 25 EVs that require battery swapping and J = 3
stations as assignment candidates. Fix Tm = 6, i.e., we

only look at 6 time slots ahead. Other parameters are ran-

domly generated. For instance, τij’s arbitrarily take discrete

values between 1 and Tm, then dij’s are random with an

average 5 times the corresponding τij . We then let αij :=
0.02dij + 0.1τij . For simplicity, set all EVs’ driving ranges
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Fig. 3. Optimal assignment of our test case.

sufficiently large to reach each station. The parameters of

stations, including n0
j ’s, cj(t)’s and

∑
i∈Ip

Mij(τ
−1
ij (t))’s,

are all randomly picked within certain ranges. Given that,

(ñj(t), t = 1, 2, . . . , 6, j = 1, 2, 3) is attainable, as the red

dash lines show in Fig. 3.

The proposed approach efficiently computes an optimal

assignment; see Fig. 3 for how the number of available

batteries at each station evolves after the assignment. Bat-

teries at station 1 in the first half of the time horizon are

almost fully utilized to avoid unduly congesting stations 2
and 3. In the second half all stations run out of batteries.

Then (7) provides the optimal assignment. For this test case,

the proposed approach achieves a minimal cost of 49.00
with 22.00 total EV cost and 27 total station congestion.

In contrast, a heuristic that assigns to each EV its nearest

station incurs a cost of 96.46, including 9.46 total EV cost

and 87 total station congestion. Hence an optimal assignment

achieves a 49.20% improvement for this case.

We check the computational efficiency of the proposed

approach by scaling up the number of EVs that require

battery swapping while fixing other parameters with the

number of stations J = 10. The computation time required

to run our algorithm on a normal laptop PC (Intel Core i7-

3632QM CPU@2.20GHz, 8GB RAM, and 64-bit Windows

10 OS) is shown in Fig. 4.

V. CONCLUSION

We formulate the problem of optimal station assignment

for EV battery swapping that takes into account both tem-

poral and spatial couplings. We show that the problem can

be reduced to the minimal weight perfect bipartite matching

problem. This leads to an efficient polynomial-time solution.

Numerical examples suggest that the proposed approach

performs much better than greedy heuristics.
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