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Abstract— This paper proposes a certificate, rooted in ob-
servability, for asymptotic convergence of saddle flow dynamics
of convex-concave functions to a saddle point. This observable
certificate directly bridges the gap between the invariant set
and the equilibrium set in a LaSalle argument, and generalizes
conventional conditions such as strict convexity-concavity and
proximal regularization. We further build upon this certificate
to propose a separable regularization method for saddle flow
dynamics that makes minimal requirements on convexity-
concavity and yet still guarantees asymptotic convergence to
a saddle point. Our results generalize to saddle flow dynamics
with projections on the vector field and have an immediate
application as a distributed solution to linear programs.

I. INTRODUCTION

There has been increasing interest in studying optimization
algorithms from a dynamical systems view-point as means
to understand their stability [1], [2], rate of convergence
[3]–[5], and robustness [5]–[8]. For example, in the basic
case of gradient descent dynamics for unconstrained convex
optimization, the objective function monotonically decreases
along trajectories towards the optimum, naturally rendering a
Lyapunov function [9]. Such realization later on leads to mul-
tiple extensions, including finite-time convergence [10], [11],
acceleration [4], [5], and time-varying optimization [12],
[13].

One prominent branch of this line of work is the study
of saddle flow dynamics, i.e., dynamics in the gradient
descent direction on a sub-set of variables and the gradient
ascent direction on the rest. Designed for locating min-max
saddle points, saddle flow dynamics are particularly suited
for solving constrained optimization problems via primal-
dual methods [14], and finding Nash equilibria of zero-sum
games [15], which lead to a broad application spectrum,
including power systems [16], communication networks [17],
and cloud computing [18].

The study of saddle flow dynamics is rooted in the
seminal work [19], which first considers asymptotic behavior
of saddle flows in the context of primal-dual algorithms.
This has received renewed attention over the last decade.
In particular, conventional conditions for asymptotic conver-
gence are re-validated with advanced analytical tools in more
general setups. For instance, [14] revisits the condition of
strict convexity-concavity in the case of discontinuous vector
fields, using LaSalle’s invariance principle for discontinuous
Caratheodory systems.
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More recent analysis has been centered around asymptotic
convergence of saddle flow dynamics under weaker con-
ditions. A set of literature establishes stronger results that
require only local strong convexity-concavity [8], convexity-
linearity, or strong quasiconvexity-quasiconcavity [20]. Fur-
ther, asymptotic oscillatory behavior of saddle flow dynamics
for general convex-concave functions and their Ω limit sets
are explicitly characterized in [1], [2].

Another active topic is to circumvent the above condi-
tions via regularization, which is an appealing approach
to handling the Lagrangian of constrained convex/linear
optimization. This includes various penalty terms on equality
constraints or even projected inequality constraints [7], [21],
as well as the proximal method [18], [22]. The rationale of
regularization is further interpreted in [23] in the frequency
domain. Despite the merit of regularization that relaxes con-
ditions for convergence, the extra penalty terms commonly
introduce couplings that may require additional computation
and communication overheads in order to realize distributed
implementation.

Our work complements the existing literature by first
obtaining a sufficient certificate for asymptotic convergence
of saddle flow dynamics of a convex-concave function.
The underlying rationale still adopts the standard quadratic
Lyapunov function and LaSalle’s invariance principle, but
directly connects the invariant set and the equilibrium set
through the existence of a certificate with certain observabil-
ity properties. In this way, the asymptotic convergence to an
equilibrium, i.e., a saddle point, is immediately available. Our
observable certificate is weaker than conventional conditions,
e.g., strict convexity-concavity and proximal regularization.

We further exploit this certificate to develop a novel sep-
arable regularization method where only minimal convexity-
concavity is required to establish convergence, a signif-
icantly milder condition than most existing ones in the
literature, that includes bi-linear saddle functions as a special
case. More importantly, the introduced regularization terms
are separable and local, thus consistently preserving any
distributed structure that original systems may have. The
certificate can be generalized to accommodate projections
on the vector field and, as a result, allows us to apply our
separable regularization to designing distributed solvers for
linear programs.

The remainder of the paper is organized as follows.
Section II introduces the problem formulation with basic
definitions and assumptions, followed by the key results
on asymptotic convergence of saddle flow dynamics in
Section III. We further generalize the results to the projected
cases in Section IV. Section V provides simulation valida-
tions and Section VI concludes.
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Notation: Let R and R≥0 be the sets of real and non-
negative real numbers, respectively. Given two vectors x, y ∈
Rn, xi and yi denote their ith entries, respectively; and
x ≤ y holds if xi ≤ yi holds for ∀i. Given a continuously
differentiable function S(x, y) ∈ C1 with S : Rn×Rm → R,
we use ∂

∂xS(x, y) ∈ R1×n and ∂
∂yS(x, y) ∈ R1×m to denote

the partial derivatives with respect to x and y, respectively.
We further define ∇xS(x, y) =

[
∂
∂xS(x, y)

]T
.

II. PROBLEM FORMULATION

We consider a function S(x, y) with S : Rn × Rm → R.
Our goal is to study different dynamic laws that seek to
converge to some saddle point (x?, y?) of S(x, y).

Definition 1 (Saddle Point). A point (x?, y?) ∈ Rn×m is a
saddle point of a function S(x, y) if{

∇xS(x?, y?) = 0

∇yS(x?, y?) = 0
(1)

holds, and S(x?, y?) is not a local extremum.

While in general, such questions could be asked on a
setting without any further restrictions, neither the existence
of saddle points nor convergence towards them is easy to
guarantee. For the purpose of this paper, we focus our
attention on functions S(x, y) that are convex-concave.

Definition 2 (Convex-Concave Functions). A function
S(x, y) is convex-concave if and only if S(·, y) is convex
for ∀y ∈ Rm and S(x, ·) is concave for ∀x ∈ Rn. A
function S(x, y) is strictly convex-concave if and only if
S(x, y) is convex-concave and either S(·, y) is strictly convex
for ∀y ∈ Rm or S(x, ·) is strictly concave for ∀x ∈ Rn.

Due to the convexity-concavity of S(x, y), (1) implies that
indeed any of its saddle points (x?, y?) can be characterized
by

S(x?, y) ≤ S(x?, y?) ≤ S(x, y?) , (2)

for ∀x ∈ Rn and ∀y ∈ Rm. Therefore, we are specifically
interested in minimizing S(x, y) over x and meanwhile
maximizing S(x, y) over y.

Throughout this work, we will assume that such a point
(x?, y?) does exist and that S(x, y) is continuously differen-
tiable, i.e., S(x, y) ∈ C1, as formally summarize below.

Assumption 1. S(x, y) is convex-concave, continuously dif-
ferentiable, and there exists at least one saddle point (x?, y?)
satisfying (2).

The continuous differentiability in Assumption 1 is intro-
duced to simplify the exposition. It does not significantly
limit the scope of the results as one can always derive a
continuously differentiable surrogate of a continuous con-
vex/concave function by means of the Moreau Envelope [24].

Given a convex-concave function S(x, y) satisfying As-
sumption 1, we refer to the following dynamic law

ẋ = −∇xS(x, y) , (3a)
ẏ = +∇yS(x, y) , (3b)

as the saddle flow dynamics of S(x, y). Due to convexity-
concavity, a point is an equilibrium of (3) if and only if
it is a saddle point of S(x, y), and the dynamic law drives
the system towards such points in the directions of gradient
descent and ascent, respectively, for x and y. We will mainly
work with this standard form of saddle flow dynamics to
locate a saddle point of S(x, y).

III. ASYMPTOTIC CONVERGENCE

In this section we present an observable certificate that
guarantees asymptotic convergence of the saddle flows dy-
namics (3) to a saddle point of S(x, y). We show that
two conventional conditions of strict convexity-concavity
and proximal regularization satisfy this certificate as special
cases. We further build on this certificate to develop a sep-
arable regularization method that entails minimal convexity-
concavity requirements on S(x, y) for saddle flow dynamics
to asymptotically converge to a saddle point.

A. Observable Certificates

We now describe the proposed observable certificate for
the saddle flow dynamics (3) to asymptotically converge to
a saddle point of S(x, y).

Definition 3 (Observable Certificate). A function h(x, y)
with h : Rn × Rm → R2

≥0 is an observable certificate of
S(x, y), if and only if there exists a saddle point (x?, y?)
such that [

S(x?, y?)− S(x?, y)

S(x, y?)− S(x?, y?)

]
≥ h(x, y) ≥ 0 (4)

holds and for any trajectory (x(t), y(t)) of (3) that satisfies
h(x(t), y(t)) ≡ 0, we have ẋ, ẏ ≡ 0.

Remark. We call h(x, y) an observable certificate, due
the second property of Definition 3, which is akin to (3)
having h(x, y) as an observable output. It is exactly this
observability property that will allow us to connect invariant
sets with saddle-points.

Assumption 2. S(x, y) has an observable certificate h(x, y)
as given by Definition 3.

Checking whether Assumption 2 holds basically requires
hunting for a qualified observable certificate h(x, y) of
S(x, y). Under this assumption, asymptotic convergence of
the saddle flow dynamics (3) is formally stated below.

Theorem 1 (Sufficiency of Observable Certificates). Let
Assumptions 1 and 2 hold. Then the saddle flow dynamics
(3) asymptotically converge to some saddle point (x?, y?) of
S(x, y).

Proof. The proof follows from applying LaSalle’s invariance
principle [9] to the following candidate Lyapunov function

V (x, y) =
1

2
‖x− x?‖2 +

1

2
‖y − y?‖2 , (5)

where (x?, y?) is the saddle point identified in Defini-
tion 3. Taking the Lie derivative of (5) along the trajectory
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(x(t), y(t)) of (3) gives

V̇ = (x− x?)T ẋ+ (y − y?)T ẏ
= (x− x?)T [−∇xS(x, y)] + (y − y?)T [+∇yS(x, y)]

= (x? − x)T∇xS(x, y)− (y? − y)T∇yS(x, y)

≤ S(x?, y)− S(x, y)− (S(x, y?)− S(x, y))

= S(x?, y)− S(x, y?)

= S(x?, y)− S(x?, y?)︸ ︷︷ ︸
≤0

+S(x?, y?)− S(x, y?)︸ ︷︷ ︸
≤0

,

where the second equality plugs in (3), the first inequality
applies the convexity-concavity of S(x, y), and the last
inequality follows from the saddle property (2) of (x?, y?).

Since (5) is radially unbounded, every sub-level set of it
is compact. From above, it follows that the trajectories of (3)
are bounded and contained in an invariant domain

D0(x0, y0) := {(x, y) | V (x, y) ≤ V (x0, y0)} , (6)

where (x0, y0) is any given initial point. LaSalle’s invariance
principle then implies that any trajectory of (3) should
converge to the largest invariant set

S := D0 ∩
{

(x, y) | V̇ (x(t), y(t)) ≡ 0
}
. (7)

Given Assumption 2, (4) implies that S is indeed a subset of

{(x, y) | h(x(t), y(t)) ≡ 0} , (8)

which is further a subset of the equilibrium set of (3), denoted
as

E := {(x, y) | ẋ(t), ẏ(t) ≡ 0} , (9)

i.e., S ⊂ E.
It follows that the invariant set S contains only equilibrium

points. If S were to be composed of isolated points – only
possible when there is a unique saddle point – this would
be sufficient to prove convergence to the (unique) saddle
point. However, in general LaSalle’s invariance principle
only shows asymptotic convergence to the invariant set,
without guaranteeing convergence to a point within it, even
in the case where the set is composed of equilibrium points.

This issue is circumvented by the fact that all the equi-
libria within S are stable. See, e.g., [25, Corollary 5.2].
Alternatively, notice that S is compact, and as a result any
trajectory within the Ω limit set of (3) has a convergent sub-
sequence. Let (x̄, ȳ) be the limit point of such a sequence.
Due to (x̄, ȳ) ∈ S, it is also a saddle point. By changing
(x?, y?) specifically to (x̄, ȳ) in the definition of V (x, y), it
follows that 0 ≤ V (x(t), y(t)) → 0 holds, which implies
(x(t), y(t))→ (x̄, ȳ). �

The existence and characterization of such observable
certificates h(x, y) may still be vague from only Definition 3.
We next discuss how they can be identified through concrete
examples.

B. Revisiting Existing Conditions

We show that the observable certificate is indeed a weaker
condition underneath some of the conventional ones required

for asymptotic convergence of the saddle flow dynamics (3).
1) Strict Convexity-Concavity: The most common con-

dition is arguably the strict convexity-concavity of S(x, y)
[14]. We formalize its connection with our observable cer-
tificate as below.

Assumption 3. S(x, y) is strictly convex-concave.

Proposition 2 (Strict Convexity-Concavity). Let Assump-
tions 1 and 3 hold. Then the function

h(x, y) :=

[
S(x?, y?)− S(x?, y)

S(x, y?)− S(x?, y?)

]
, (10)

with (x?, y?) being an arbitrary saddle point of S(x, y), is
an observable certificate of S(x, y).

Proof. Indeed, the upper bound of h(x, y) in (4) itself is
naturally a qualified observable certificate. Without loss of
generality, we assume S(x, y) is only strictly convex in x for
∀y and just concave in y for ∀x. Due to the strict convexity
in x, S(x, y?) ≡ S(x?, y?) implies x(t) ≡ x? uniquely.
Meanwhile, ∇yS(x?, y) ≡ 0 follows from S(x?, y) ≡
S(x?, y?), which leads to ẏ = ∇yS(x, y) ≡ ∇yS(x?, y) ≡
0. Therefore, ẋ, ẏ ≡ 0 is guaranteed from h(x, y) ≡ 0. �

Asymptotic convergence of the saddle flow dynamics (3)
then immediately follows from Theorem 1.

Corollary 3. Let Assumptions 1 and 3 hold. Then the saddle
flow dynamics (3) asymptotically converge to some saddle
point (x?, y?) of S(x, y).

2) Proximal Regularization: In the particular form of
saddle flow dynamics known as primal-dual dynamics [14],
a proximal regularization method is proposed in [18], [22] to
guarantee asymptotic convergence of the regularized saddle
flow dynamics, even in the absence of strict convexity-
concavity. Specifically, a surrogate differentiable convex-
concave function

S̄(z, y) := min
x

{
S(x, y) +

1

2
‖x− z‖2

}
is defined from S(x, y) that maintains the same saddle points
[22]. Then the following regularized saddle flow dynamics

ż = −∇zS̄(z, y) , (11a)
ẏ = +∇yS̄(z, y) , (11b)

suffice to locate a saddle point. We formalize the connection
of this method with our observable certificate as follows.

Proposition 4 (Proximal Regularization). Let S(x, y) be a
Lagrangian function for some constrained convex program
and Assumption 1 hold. Then the function

h(z, y) :=

[
S̄(z?, y?)− S̄(z?, y)

1
2‖x̄(z, y?)− z‖2

]
, (12)

with x̄(z, y?) := arg minx
{
S(x, y?) + 1

2‖x− z‖
2
}

and
(z?, y?) being an arbitrary saddle point of S̄(z, y), is an
observable certificate of S̄(z, y).

4819

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 05:07:56 UTC from IEEE Xplore.  Restrictions apply. 



Details of the proof are omitted here and readers are
referred to [22] for more insights. We remark that the
identification of this observable certificate (12) does not
significantly alleviate the analysis overheads since the com-
plementary equilibrium properties of proximal regularization
on the Lagrangian S(x, y) are still crucial to validating the
observable certificate (12) and establishing convergence.

Anyhow, the existence of an observable certificate satisfies
Assumption 2 for S̄(z, y) and thus asymptotic convergence
of the saddle flow dynamics (11) follows immediately from
Theorem 1.

Corollary 5. Let S(x, y) be a Lagrangian function for some
constrained convex program and Assumption 1 hold. Then
the regularized saddle flow dynamics (11) asymptotically
converge to some saddle point (z?, y?) of S̄(z, y), with
(x? = z?, y?) being a saddle point of S(x, y).

In fact, even the differentiability in Assumption 1 is not
required since the surrogate S̄(z, y) can be continuously dif-
ferentiable regardless. However, this proximal regularization
method is only limited to the particular form of primal-dual
dynamics.

C. Separable Regularization

We further design a novel separable regularization method
that exploits our observable certificate and only requires As-
sumption 1 for a regularized version of saddle flow dynamics
to asymptotically converge to a saddle point. The key of this
method is to augment the domain of S(x, y) and introduce
regularization terms without altering the positions of the
original saddle points. In particular, we propose a regularized
surrogate for S(x, y) via the following augmentation

S(x, z, y, w) :=
1

2ρ
‖x−z‖2 +S(x, y)− 1

2ρ
‖y−w‖2, (13)

where z ∈ Rn and w ∈ Rm serve as two new sets of
virtual variables and ρ > 0 is a constant regularization
coefficient. It is straightforward to verify the fixed positions
of saddle points between S(x, y) and S(x, z, y, w) with
virtual variables aligned with original variables.

Lemma 6 (Saddle Point Invariance). Let Assumption 1 hold.
Then a point (x?, y?) is a saddle point of S(x, y) if and only
if (x?, z?, y?, w?) is a saddle point of S(x, z, y, w), with

x? = z? and y? = w? . (14)

Proof. Recall the saddle property (2) of a saddle point, this
theorem follows immediately from

S(x?, z?, y, w) ≤ S(x?, x?, y?, y?) ≤ S(x, z, y?, w?)

⇐⇒ S(x?, z?, y, w) ≤ S(x?, y?) ≤ S(x, z, y?, w?)

⇐⇒ S(x?, y)−
‖y−w‖

2ρ

2

≤ S(x?, y?) ≤ S(x, y?)+
‖x−z‖2

2ρ

⇐⇒ S(x?, y) ≤ S(x?, y?) ≤ S(x, y?) ,

where the first and second steps build upon the definition (13)
of S(x, z, y, w), and the third step uses norm non-negativity.
�

The regularized function S(x, z, y, w) is convex in (x, z),
concave in (y, w), and continuously differentiable with at
least one saddle point, by its definition in (13) and Lemma 6.
Therefore, Assumption 1 also holds for S(x, z, y, w).
Lemma 6 ensures that whenever we locate a saddle point
of S(x, z, y, w), a saddle point of S(x, y) satisfying (2) is
attained simultaneously. This motivates us to instead look at
the saddle flow dynamics of S(x, z, y, w).

Following (3), this regularized version of saddle flow
dynamics are given by

ẋ = −∇xS(x, y)− 1

ρ
(x− z) , (15a)

ż =
1

ρ
(x− z) , (15b)

ẏ = +∇yS(x, y)− 1

ρ
(y − w) , (15c)

ẇ =
1

ρ
(y − w) . (15d)

Although this dynamic law has twice as many state variables
as its prototype (3), it is important to notice that, unlike the
proximal gradient algorithm [18], [22], [24] and the equality
constrained regularization [7], [21], (15) still preserves the
same distributed structure that (3) may have. As a result, it
can be implemented in a fully distributed fashion.

We are now ready to provide the key result that the
regularized saddle flow dynamics (15) asymptotically reach
a saddle point as long as the minimal convexity-concavity
holds for S(x, y).

Proposition 7 (Separable Regularization). Let Assumption 1
hold. Then the function

h(x, z, y, w) :=

[
1
2ρ‖y − w‖

2

1
2ρ‖x− z‖

2

]
(16)

is an observable certificate of S(x, z, y, w).

Proof. The above observable certificate h(x, z, y, w) satisfies
(4) in light of the following calculation:[

S(x?, z?, y?, w?)− S(x?, z?, y, w)

S(x, z, y?, w?)− S(x?, z?, y?, w?)

]

≥


S(x?, y?)− S(x?, y)︸ ︷︷ ︸

≥0

+ 1
2ρ‖y − w‖

2

S(x, y?)− S(x?, y?)︸ ︷︷ ︸
≥0

+ 1
2ρ‖x− z‖

2


≥

[
1
2ρ‖y − w‖

2

1
2ρ‖x− z‖

2

]
≥ 0 .

The fact that h(x, z, y, w) ≡ 0 implies x(t) ≡ z(t) and
y(t) ≡ w(t) enforces ż, ẇ ≡ 0 according to (15b), (15d),
and then ẋ, ẏ ≡ 0 is simultaneously guaranteed. �

Assumption 2 holds for the regularized function
S(x, z, y, w) and asymptotic convergence of the regularized
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saddle flow dynamics (15) follows immediately from Theo-
rem 1.

Corollary 8. Let Assumption 1 hold. Then the regularized
saddle flow dynamics (15) asymptotically converge to some
saddle point (x?, z?, y?, w?) of S(x, z, y, w), with (x?, y?)
being a saddle point of S(x, y).

Remark. Proposition 7 indicates that only the convexity-
concavity of S(x, y) is required to asymptotically arrive at
a saddle point through the regularized saddle flow dynamics
(15). This condition is significantly milder than most existing
ones in the literature, and is in some sense minimal, as
it includes bi-linear saddle functions as a special case.
Unlike the aforementioned proximal regularization method in
Section III-B, our separable regularization method applies to
saddle flow dynamics of general convex-concave functions.

IV. PROJECTED SADDLE FLOW DYNAMICS

In this section we generalize the results in Section III to
account for projections on the vector field of the saddle flow
dynamics (3) that are commonly introduced in the case of
solving inequality constrained optimization problems.

Specifically, we look at a projected version of saddle flow
dynamics of a convex-concave function S(x, y) as below:

ẋ = −∇xS(x, y), (17a)

ẏ = [+∇yS(x, y)]
+
y , (17b)

where, without loss of generality, we define the element-wise
projection [·]+y only on part of the vector field regarding y
as

[∇yiS(x, y)]
+
yi

:=

{
∇yiS(x, y), if yi > 0,

max {∇yiS(x, y), 0} , otherwise.
(18)

With this projection, y(t) is constrained to be non-negative as
long as it starts with a non-negative initial point. Accordingly,
we slightly modify Assumption 1 to guarantee the existence
of such saddle points.

Assumption 4. S(x, y) is convex-concave, continuously
differentiable, and there exists at least one saddle point
(x?, y? ≥ 0) satisfying (2).

In this context, saddle points are restrained to ones in the
non-negative orthant of y. Therefore, any observable certifi-
cate of S(x, y) will be defined on a saddle point (x?, y? ≥ 0)
in Definition 3. By symmetry, an analogous projection may
also be imposed on the other part of the vector field regarding
x. Next we formally generalize the sufficiency of observable
certificates developed in Section III-A.

A. Observable Certificates for Projected Flows

The generalization of Theorem 1 for asymptotic conver-
gence of the projected saddle flow dynamics (17) to a saddle
point of S(x, y) is summarized as follows.

Theorem 9 (Sufficiency of Observable Certificates for Pro-
jected Flows). Let Assumptions 2 and 4 hold. Then the

projected saddle flow dynamics (17) asymptotically converge
to some saddle point (x?, y? ≥ 0) of S(x, y).

The proof requires a lemma regarding the projection [·]+y .

Lemma 10. Given any arbitrary y, y? ∈ Rm≥0 and ν ∈ Rm,

(y − y?)T
(

[ν]
+
y − ν

)
≤ 0

holds.

Proof. The proof of this lemma follows from the fact that
element-wise, [νi]

+
yi differs from νi only in the case of νi < 0

and yi = 0 where the projection is active, which implies

(y − y?)T
(

[ν]
+
y − ν

)
=

∑
i:νi<0,yi=0

(0− yi∗)(0− νi) ≤ 0 .

�

Using this lemma, the proof of Theorem 9 essentially
follows from that of Theorem 1 as follows.

Proof. Consider the same quadratic Lyapunov function (5).
Taking its Lie derivative along the trajectory (x(t), y(t)) of
(17) yields

V̇ = (x− x?)T ẋ+ (y − y?)T ẏ
= (x− x?)T [−∇xS(x, y)] + (y − y?)T [+∇yS(x, y)]

+
y

= (x? − x)T∇xS(x, y)− (y? − y)T∇yS(x, y)

+ (y − y?)T
(

[∇yS(x, y)]
+
y −∇yS(x, y)

)
︸ ︷︷ ︸

≤0

≤ S(x?, y)− S(x, y)− (S(x, y?)− S(x, y))

= S(x?, y)− S(x, y?)

= S(x?, y)− S(x?, y?)︸ ︷︷ ︸
≤0

+S(x?, y?)− S(x, y?)︸ ︷︷ ︸
≤0

,

where the key step is to use Lemma 10 in the first inequality.
The rest of the proof remains almost the same except that the
largest invariant set is defined between the on-off switches of
the projection. From above, V̇ (x, y) ≡ 0 additionally implies

y(t) ≡ y?

or
[∇yS(x, y)]

+
y ≡ ∇yS(x, y) ,

and an invariance principle for Caratheodory systems [26]
can be applied to account for the discontinuities in the vector
field due to the projection. �

B. Application: Distributed Solution to Linear Program

Theorem 9 enables the separable regularization method in
Section III-C to apply to projected saddle flow dynamics as
well since we can still identify the same observable certificate

h(x, z, y, w) :=

[
1
2ρ‖y − w‖

2

1
2ρ‖x− z‖

2

]
to satisfy Assumption 2. One of its straightforward applica-
tions involves solving inequality constrained linear programs
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(d) System evolution.

Fig. 1: A two-state linear optimal control problem solved by saddle flow dynamics with separable regularization.

in a distributed fashion with guaranteed asymptotic conver-
gence to an optimal solution.

Consider the following problem:

min
x∈Rn

cTx (19a)

s.t. Ax− b ≤ 0 : y ∈ Rm≥0 (19b)

which corresponds to a bi-linear Lagrangian

S(x, y) := cTx+ yT (Ax− b).

We introduce virtual variables z ∈ Rn, w ∈ Rm and a
constant ρ > 0 to define

S(x, z, y, w) :=
1

2ρ
‖x−z‖2+cTx+yT (Ax−b)− 1

2ρ
‖y−w‖2

to be its augmented Lagrangian. Lemma 6 implies that
(x?, y? ≥ 0) is a saddle point of S(x, y), i.e., one optimal
solution to (19), if and only if (x?, z? = x?, y? ≥ 0, w? =
y?) is a saddle point of S(x, z, y, w).

Then an algorithm to optimally solve a linear program of
the form (19) follows immediately from asymptotic conver-
gence of the following projected and regularized saddle flow
dynamics:

ẋ = −c−AT y − 1

ρ
(x− z) , (20a)

ż =
1

ρ
(x− z) , (20b)

ẏ =

[
Ax− b− 1

ρ
(y − w)

]+
y

, (20c)

ẇ =
1

ρ
(y − w) , (20d)

which maintains the distributed structure where each agent
i = 1, 2, . . . , n may locally manage

ẋi = −ci −ATi y −
1

ρ
(xi − zi) , (21a)

żi =
1

ρ
(xi − zi) , (21b)

and/or each dual agent j = 1, 2, . . . ,m may locally manage

ẏj =

[
Ajx− bj −

1

ρ
(yj − wj)

]+
yj

, (21c)

ẇj =
1

ρ
(yj − wj) , (21d)

with Ai and Aj being the ith column and the jth row of A,
respectively.

V. SIMULATION RESULTS

We illustrate asymptotic convergence of the distributed
algorithm (21) for linear programs, as guaranteed by our ob-
servable certificate, through a finite-horizon optimal control
problem over a group of agents with coupled dynamics [7].
The goal is to use minimal aggregate control effort to main-
tain small system states subject to certain final performance
requirements. In particular, consider the following problem
defined on the time horizon T := {0, 1, . . . , T − 1} and the
set N := {1, 2, . . . , N} of agents:

min
x,u

∑
t∈T
‖x(t+ 1)‖1 + ‖u(t)‖1 (22a)

s.t. x(t+ 1) = Gx(t) +Hu(t), t ∈ T (22b)
Dx(T + 1)− d ≤ 0 (22c)

Here we define x := (x(t + 1), t ∈ T ) and u := (u(t), t ∈
T ). x(t) ∈ RN and u(t) ∈ RN are respectively vectors
of system states and control inputs at time t. G ∈ RN×N
and H ∈ RN×N are the time-invariant dynamics matrix and
control matrix, respectively. (22c) specifies the constraint
on the final state with given D ∈ RM×N and d ∈ RM .
The initial state x(0) is fixed. This problem can be cast
into the standard form of a linear program by splitting each
variable of state and control input into two, representing its
positive and negative components, e.g., x(t) = x+(t)−x−(t)
with x+(t), x−(t) ≥ 0. We still use x, u to denote all the
variables:

min
x,u

∑
t∈T

∑
n∈N

x+n (t+ 1) + x−n (t+ 1) + u+
n (t) + u−n (t)

s.t. x+(t+ 1)− x−(t+ 1) = G
(
x+(t)− x−(t)

)
+H

(
u+(t)− u−(t)

)
, t ∈ T

D
(
x+(T + 1)− x−(T + 1)

)
− d ≤ 0

x+(t+ 1), x−(t+ 1), u+(t), u−(t) ≥ 0, t ∈ T

It can be verified that at the optimum the split twin compo-
nents of any variable cannot be simultaneously positive [27].
We apply (21) to solve this linear program with dual variables
y ∈ RNT+M and virtual variables x̄(t) ∈ RN , ū(t) ∈ RN ,
ȳ ∈ RNT+M . Each agent n is responsible for 4T variables,
2T for xn and 2T for un, while up to 4NT variables with
any consensus-based distributed algorithm. Note that the dual
variable updates may also be locally managed by up to
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NT +M dual agents, if necessary.
We test a specific case of N = 2 agents in a time horizon

of T = 2 time slots with the initial state x(0) = [6 10]T . The
system is driven by a single control input on the first agent’s
state. More specifically, we set the regularization coefficient
ρ to be 3, and the problem parameters are given by

G :=

[
1.1 0

−0.7 1.1

]
, H :=

[
1.5 0

0 0

]
, D :=

[
1

1.5

]T
, d := 3.

The evolution of the continuous-time saddle flow dynamics
for the control inputs, system states, dual multipliers as well
as their virtual counterparts is displayed in Figures 1(a)-1(c),
respectively. For each primal variable, we have already com-
bined its two split components back together for conciseness.

Apparently, the regularization renders a variable bound
tightly with its virtual counterpart in transient, and they
asymptotically converge to the same value of an optimal
solution in the limit. Notably, y5, corresponding to (22c), in
Figure 1(c) is the only dual variable subject to the projection
that strictly stays non-negative. Once all the variables are
determined, the control inputs can be implemented to attain
the system evolution with the minimal aggregate control
effort and system states (in the sense of 1-norm), as depicted
in Figure 1(d). This is consistent with the optimal solution
acquired from any centralized linear programming solver:

u?(0) =

[
0.8190

0

]
, u?(1) =

[
−5.7410

0

]
,

x?(1) =

[
7.8286

6.8000

]
, x?(2) =

[
0

2.0000

]
.

VI. CONCLUSION

This paper proposes an observable certificate that directly
establishes connection between the invariant set and the
equilibrium set for saddle flow dynamics of a convex-
concave function such that the asymptotic convergence to
a saddle point can be guaranteed. The certificate is rooted in
observability, and we identify the existence of such observ-
able certificates in the presence of conventional conditions,
e.g., strict convexity-concavity and proximal regularization,
as well as the proposed separable regularization method.
Therefore, our observable certificate is a weaker condition,
and it further generalizes to situations with projections on
the vector field of saddle flow dynamics. Besides, the novel
separable regularization method that builds on our observ-
able certificate requires only minimal convexity-concavity to
establish convergence and enjoys a separable structure for
potential distributed implementation, which is demonstrated
through an application to distributed linear programming.
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