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Abstract—In Part I of this paper, we formulate an opti-
mal scheduling problem for battery swapping that assigns
to each electric vehicle (EV) a best station to swap its de-
pleted battery based on its current location and state of
charge. The schedule aims to minimize a weighted sum
of EVs’ travel distance and electricity generation cost over
both station assignments and power flow variables, subject
to EV range constraints, grid operational constraints, and
ac power flow equations. We propose there a centralized so-
lution based on second-order cone programming relaxation
of optimal power flow and generalized Benders decomposi-
tion that is applicable when global information is available.
In this paper, we propose two distributed solutions based
on the alternating direction method of multipliers and dual
decomposition, respectively, that are suitable for systems
where the distribution grid, stations, and EVs are managed
by separate entities. Our algorithms allow these entities to
make individual decisions, but coordinate through privacy-
preserving information exchanges to solve a convex relax-
ation of the global problem. We present simulation results
to show that both algorithms converge quickly to a solution
that is close to optimum after discretization.
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(EV), joint battery swapping, optimal power flow (OPF).
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I. INTRODUCTION

A. Motivation

IN PART I [1] of this paper, we formulate an optimal schedul-
ing problem for battery swapping that assigns to each electric

vehicle (EV) a best station to swap its depleted battery based on
its current location and state of charge. The station assignments
not only determine EVs’ travel distance, but also impact signifi-
cantly the power flows on a distribution network because batter-
ies are large loads. The schedule aims to minimize a weighted
sum of EVs’ travel distance and electricity generation cost over
both station assignments and power flow variables, subject to
EV range constraints, grid operational constraints, and ac power
flow equations. This joint battery swapping and optimal power
flow (OPF) problem is nonconvex and computationally difficult
because ac power flow equations are nonlinear and the station
assignment variables are binary.

We propose in Part I a centralized solution based on second-
order cone programming (SOCP) relaxation of the OPF, which
deals with the nonconvexity of power flow equations, and gen-
eralized Benders decomposition, which deals with the binary
nature of station assignment variables. When the relaxation of
the OPF is exact, this approach computes a global optimum.
It is, however, suitable only for vertically integrated systems
where the distribution grid, stations,1 and EVs are managed
centrally by the same operator, as is the electric taxi programs
of State Grid in China. As EVs proliferate and battery swap-
ping matures, an equally (if not more) likely business model
will emerge where the distribution grid is managed by a utility
company, stations are managed by a station operator (or multi-
ple station operators), and EVs may be managed by individual
drivers (or multiple EV groups, e.g., taxi companies in the elec-
tric taxi case). In particular, the set of EVs to be scheduled may
include a large number of private cars in addition to commercial
fleet vehicles.

The centralized solution of Part I will not be suitable for
these future scenarios, for two reasons. First, the operator re-
quires global information such as the grid topology, impedances,
operational constraints, background loads, availability of fully
charged batteries at each station, locations, and states of charge
of EVs, etc. However, in the future the distribution grid, stations
and EVs will likely be operated by separate entities that do not

1Throughout this paper, stations refers to battery swapping service stations.
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Fig. 1. Distributed framework.

share their private information. Second, generalized Benders de-
composition solves a mixed-integer convex problem centrally
and is computationally expensive. It is hard to scale it to com-
pute in real-time optimal station assignments and an (relaxed)
OPF solution in future scenarios where the numbers of EVs and
stations are large. In this paper, we develop distributed solu-
tions that preserve private information and are more suitable for
general scenarios.

Instead of generalized Benders decomposition, we relax the
binary station assignment variables to real variables in [0, 1].
With both the relaxation of OPF and the relaxation of binary
variables, the resulting approximate problem of joint battery
swapping and OPF is a convex program. This allows us to de-
velop two distributed solutions where separate entities make
their individual decisions but coordinate through information
exchanges that do not involve their private information in or-
der to jointly solve the global problem. The first solution based
on the alternating direction method of multipliers (ADMM) is
for systems where the distributed grid is managed by a utility
company and all stations and EVs are managed by a station
operator. Here, the utility company maintains a local estimate
of some aggregate assignment information that is computed by
the station operator, and they exchange the estimate and the
aggregate information to attain consensus. The second solution
based on dual decomposition is for systems where the distributed
grid is managed by a utility company, all stations are managed
by a station operator, and all EVs are individually operated.
The utility company still sends its local estimate to the station
operator while the station operator does not need to send the
utility company the aggregate assignment information, but only
some Lagrange multipliers. The station operator also broadcasts
Lagrange multipliers to all EVs and individual EVs respond by
sending the station operator their choices of stations for battery
swapping based on the received Lagrange multipliers and their
current locations and driving ranges. In both approaches, given
the aggregate assignment information and Lagrange multipliers
that are exchanged, different entities only need their own local
states (e.g., power flow variables) and local data (e.g., impedance
values, battery states, EV locations, and driving ranges) to itera-
tively compute their own decisions. See Fig. 1 for the distributed
framework.

As discussed in Part I, the SOCP relaxation of our problem
is usually exact. The proposed distributed algorithms, however,
may return station assignments that are not binary due to the
relaxation of binary variables, which suggest a probabilistic sta-
tion assignment for an EV. We prove an upper bound on the
number of such EVs with nonbinary station assignments. The
bound guarantees that the discretization can be readily imple-
mented and also justifies the final solution is close to optimum.

B. Literature

See Part I for discussions on relevant literature on EV charg-
ing and battery swapping. The distributed solutions here are
motivated by the need to preserve private information of differ-
ent entities operating the distribution grid, stations, and EVs.
Privacy in future grids is a key challenge facing both utilities
and end users [2], e.g., see [3]–[6] for privacy concerns on smart
meters and [7]–[9] for privacy concerns on EVs. Distributed al-
gorithms preserve privacy as global information is not needed
for local computations. Liu et al. [5] schedules thermostatically
controlled loads and batteries in a household to hide its actual
load profiles such that no sensitive information can be inferred
from electricity usage. Yang et al. [6] designs an online control
algorithm of batteries that only uses the current load require-
ment and electricity price to optimize the tradeoff between smart
meter data privacy and users’ electricity cost. Liu et al. [10] pro-
poses a consensus-based distributed speed advisory system that
optimally determines a common vehicle speed for a given area
in a privacy-aware manner to minimize the total emission of
fuel vehicles or the total energy consumption of EVs. Other
applications can be found in data mining [11], cloud computing
[12], etc. To the best of our knowledge, this paper is the first
to discuss the distributed scheduling of EV battery swapping in
light of binary station assignments and grid operation.

II. PROBLEM FORMULATION

We now summarize the joint battery swapping and OPF prob-
lem in Part I, using the notations defined there.

Assignments of stations to EVs for battery swapping are
represented by the binary variables u := (uaj , a ∈ A, j ∈ Nw ),
where

uaj =
{

1, if station j is assigned to EV a
0, otherwise.

The assignments u must satisfy the following conditions.
1) The assigned station must be in every EV’s driving range

uajdaj ≤ γaca , j ∈ Nw , a ∈ A. (1a)

2) Exactly one station is assigned to every EV
∑

j∈Nw

uaj = 1, a ∈ A. (1b)

3) Every assigned station has enough fully charged batteries
∑
a∈A

uaj ≤ mj , j ∈ Nw . (1c)
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The assignments u will add charging loads to a distribution
network at buses in Nw that supply electricity to stations. The
net power injections sj = pj + iqj depend on the assignments
u according to

pj =

⎧⎪⎪⎨
⎪⎪⎩

pg
j − pb

j − r

(
Mj − mj +

∑
a∈A

uaj

)
, j ∈ Nw

pg
j − pb

j , j ∈ N/Nw

(2a)

qj = qg
j − qb

j , j ∈ N. (2b)

An active distribution network is modeled by the DistFlow
equations from [13]∑

k :(j,k)∈E

Sjk = Sij − zij lij + sj , j ∈ N (3a)

vj − vk = 2Re(zH
jkSjk ) − |zjk |2 ljk , j → k ∈ E (3b)

vj ljk = |Sjk |2 , j → k ∈ E. (3c)

The power flow quantities must satisfy the following con-
straints on grid operation.

1) Voltage stability

vj ≤ vj ≤ vj , j ∈ N. (4a)

2) Generation capacity

pg
j
≤ pg

j ≤ pg
j , j ∈ N (4b)

qg
j
≤ qg

j ≤ qg
j , j ∈ N. (4c)

3) Line transmission capacity

|Sjk | ≤ Sjk , j → k ∈ E. (4d)

The joint battery swapping and OPF problem is to minimize a
weighted sum of total generation cost in the distribution network
and total travel distance of EVs over both station assignments
and power flow variables as

min
u , s , s g ,

v , l , S

∑
j∈N

fj (p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj

s.t. (1)(2)(3)(4), u ∈ {0, 1}ANw . (5)

III. DISTRIBUTED SOLUTIONS

A. Relaxations

The joint battery swapping and OPF problem (5) is compu-
tationally difficult for two reasons: The quadratic equality (3c)
is nonconvex and the assignment variables u are binary. To deal
with the first difficulty, we replace (3c) by an inequality to relax
the feasible set into a second-order cone, i.e., replace (3) in the
problem (5) by∑

k :(j,k)∈E

Sjk = Sij − zij lij + sj , j ∈ N (6a)

vj − vk = 2Re(zH
jkSjk ) − |zjk |2 ljk , j → k ∈ E (6b)

vj ljk ≥ |Sjk |2 , j → k ∈ E. (6c)

Fixing any assignments u ∈ {0, 1}ANw , the optimization
problem is then a convex problem. If an optimal solution to
the SOCP relaxation attains equality in (6c), it also satisfies
(3), and is therefore, optimal (for the given u). In this case, we
say that the SOCP relaxation is exact. Sufficient conditions are
known that guarantee the exactness of the SOCP relaxation;
see [14] and [15] for a comprehensive tutorial and references
therein. Even when these conditions are not satisfied, the SOCP
relaxation for practical radial networks is still often exact, as
confirmed also by our simulations in both Part I and this paper.

To deal with the second difficulty, we use generalized Ben-
ders decomposition in Part I. This approach computes an optimal
solution when the SOCP relaxation is exact, but the computa-
tion is centralized and is suitable only when a single organiza-
tion, e.g., State Grid in China, operates all of the distribution
grid, stations and EVs. In this paper, we develop distributed
solutions that are suitable for systems where these three are
operated by separate entities that do not share their private in-
formation. To this end, we relax the binary assignment variables
u to real variables u ∈ [0, 1]ANw . The constraints (1) are then
replaced by

uaj = 0 if daj > γaca , j ∈ Nw , a ∈ A (7a)∑
j∈Nw

uaj = 1, a ∈ A (7b)

∑
a∈A

uaj ≤ mj , j ∈ Nw . (7c)

In summary, in this paper, we solve the following convex
relaxation of (5):

min
u , s , s g ,

v , l , S

∑
j∈N

fj (p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj

s.t. (2)(4)(6)(7), u ∈ [0, 1]ANw . (8)

This problem has a convex objective and convex quadratic con-
straints. After an optimal solution (x∗, u∗) of (8) is obtained,
we check if x∗ attains equality in (6c). We also discretize u∗

aj

into {0, 1}, e.g., by setting for each EV a a single large u∗
aj to

1 and the rest to 0 heuristically. An alternative is to randomize
the station assignments using u∗ as a probability distribution.
Whichever method is employed, it should guarantee the dis-
cretized station assignments are feasible. As we will show later,
the discretization is readily implementable and achieves binary
station assignments close to optimum.

B. Distributed Solution via the ADMM

The relaxation (8) decomposes naturally into two subprob-
lems, one on station assignments over u and the other on OPF
over (s, sg , v, l, S). The station assignment subproblem will be
solved by a station operator that operates the network of sta-
tions. The OPF subproblem will be solved by a utility company.
Our goal is to design a distributed algorithm for them to jointly
solve (8) without sharing their private information.

These two subproblems are coupled only in (2a) where the
utility company needs the charging load se

j = r(Mj − mj +
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∑
a∈A uaj ) of station j in order to compute the net real power in-

jection pj . This quantity depends on the total number of EVs that
each station j is assigned to and is computed by the station oper-
ator. Their computation can be decoupled by introducing an aux-
iliary variable wj at each bus (station) j that represents the utility
company’s estimate of the quantity r

(
Mj − mj +

∑
a∈A uaj

)
,

and requiring that they be equal at optimality.
Specifically, recall the station assignment variables u, and de-

note the power flow variables by x := (w, s, sg , v, l, S) where
w := (r

(
Mj − mj +

∑
a∈A uaj

)
, j ∈ Nw ). Separate the ob-

jective function by defining

f(x) :=
∑
j∈N

fj (p
g
j )

g(u) := α
∑
a∈A

∑
j∈Nw

dajuaj .

Replace the coupling constraints (2) by constraints local to bus
j as follows:

pj =

{
pg

j − pb
j − wj , j ∈ Nw

pg
j − pb

j , j ∈ N/Nw

(9a)

qj = qg
j − qb

j , j ∈ N. (9b)

Denote the local constraint set for x by

X := {x ∈ R(|Nw |+5|N|+3|E|) : x satisfies (4)(6)(9)}.

Denote the local constraint set for u by

U := {u ∈ RANw : u satisfies (7)}.

To simplify notation, define uj :=
∑

a∈A uaj , for j ∈ Nw .
Then, the relaxation (8) is equivalent to

min
x,u

f(x) + g(u) (10a)

s.t. x ∈ X, u ∈ U (10b)

wj = r (Mj − mj + uj ) , j ∈ Nw . (10c)

We now apply the ADMM to (10). Let λ := (λj , j ∈ Nw ) be
the Lagrange multiplier vector corresponding to the current cou-
pling constraint (10c), and define the augmented Lagrangian as

Lρ(x, u, λ) := f(x) + g(u) + hρ(w, u, λ) (11a)

where hρ depends on (x, u) only through (wj , uj , j ∈ Nw ) as
follows:

hρ(w, u, λ) :=
∑

j∈Nw

λj [wj − r (Mj − mj + uj )]

+
ρ

2

∑
j∈Nw

[wj − r (Mj − mj + uj )]2 (11b)

and ρ is the step size for dual variable λ updates. The stan-
dard ADMM procedure is to iteratively and sequentially update

Fig. 2. Communication between utility company and station operator.

(x, u, λ): for n = 0, 1, . . . ,

x(n + 1) := arg min
x∈X

f(x) + hρ(w, u(n), λ(n)) (12a)

u(n + 1) := arg min
u∈U

g(u) + hρ(w(n + 1), u, λ(n)) (12b)

λj (n + 1) := λj (n) + ρ[wj (n + 1)

−r(Mj − mj + uj (n + 1))], j ∈ Nw . (12c)

Remark 1:
1) The x-update (12a) is carried out by the utility company

and involves minimizing a convex objective with con-
vex quadratic constraints. The (u, λ)-updates (12b), (12c)
are carried out by the station operator and the u-update
minimizes a convex quadratic objective with linear con-
straints. Both can be efficiently solved.

2) The x-update by the utility company in iteration n + 1
needs (u(n), λ(n)) from the station operator. From (11b),
the station operator does not need to communicate the
detailed assignments u(n) = (uaj (n), a ∈ A, j ∈ Nw )
to the utility company but only the charging load se

j =
r(Mj − mj + uj (n)) of each station j.

3) The (u, λ)-updates by the station operator in iteration
n + 1 need the utility company’s estimate w(n + 1) of
(r(Mj − mj + uj (n + 1)), j ∈ Nw ).

4) The reason why the x-update by the utility company needs
(uj (n), j ∈ Nw ) and the u-update by the station operator
needs w(n + 1) lies in the (quadratic) regularization term
in hρ . This becomes unnecessary for the dual decomposi-
tion approach in Section III-C without the regularization
term.

The communication structure is illustrated in Fig. 2. In par-
ticular, private information of the utility company, such as dis-
tribution network parameters (zjk , (j, k) ∈ E), network states
(s(n), sg (n), v(n), l(n), S(n)), cost functions f , and opera-
tional constraints, as well as private information of the station
operator, such as the total numbers of batteries (Mj, j ∈ Nw ),
the numbers of available fully charged batteries (mj , j ∈ Nw ),
how many EVs or where they are or their states of charge, and
the detailed assignments u(n), do not need to be communicated.

When the cost functions fj are closed, proper and con-
vex and Lρ(x, u, λ) has a saddle point, the ADMM itera-
tion (12) converges in that, for any j ∈ Nw , the mismatch
|wj (n) − r(Mj − mj + uj (n))| → 0 and the objective func-
tion f(x(n)) + g(u(n)) converges to its minimum value
[16]. This does not automatically guarantee that (x(n), u(n))
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converges to an optimal solution to (8).2 If (x(n), u(n)) indeed
converges to a primal optimal solution (x∗, u∗), u∗ may gener-
ally not be binary. We can use a heuristic to derive binary station
assignments from u∗, as mentioned previously. Fortunately, the
following result shows that the number of EVs with nonbinary
assignments is bounded and small in u∗. See Appendix A for its
proof.

Theorem 1: It is always possible to find an optimal solution
(x∗, u∗) to the relaxation (8) in which the number of EVs a with
u∗

aj < 1 for any j ∈ Nw is at most Nw (Nw − 1)/2.
In practice, the number Nw of stations is much smaller than

the number A of EVs that request battery swapping, and hence,
the number of nonbinary assignments that need to be discretized
will be small. Simulations in Section IV further suggest that the
discretized assignments are close to optimum.

C. Distributed Solution via Dual Decomposition

The ADMM-based solution assumes the station operator
directly controls the station assignments to all EVs. This
requires that the station operator know the locations (daj ),
states of charge (ca ), and performance (γa ) of EVs. Moreover,
the charging load se

j = r(Mj − mj + uj (n)) of each station
j needs to be provided to the utility company. We now present
another solution based on dual decomposition that is more
suitable in situations where it is undesirable or inconvenient
to share private information between the utility company, the
station operator and EVs.

In the original relaxation (8), the update of the net power
injections pj in (2) by the utility company involves uj , which
is updated by the station operator. These two computations
are decoupled in the ADMM-based solution by introducing an
auxiliary variable wj for each j ∈ Nw at the utility company
and relaxing the constraint wj = r(Mj − mj + uj ). In addi-
tion, the station assignments u must satisfy uj ≤ mj in (7c).
This is enforced in the ADMM-based solution by the station
operator that computes u for all EVs. To fully distribute the
computation to individual EVs, we dualize uj ≤ mj as well. Let
λ := (λj , j ∈ Nw ) and μ := (μj ≥ 0, j ∈ Nw ) be the Lagrange
multiplier vectors for the constraints wj = r(Mj − mj + uj )
and uj ≤ mj , j ∈ Nw , respectively. Intuitively, w and λ

decouple the computation of the utility company and that of
individual EVs through coordination with the station operator.
Additionally, μ decouples and coordinates all EVs’ decisions so
that EVs do not need direct communication among themselves
to ensure that their decisions uaj collectively satisfy uj ≤ mj .

Consider the Lagrangian of (10) with these two sets of con-
straints relaxed

L(x, u, λ, μ) := f(x) + g(u)

+
∑

j∈Nw

λj (wj − r(Mj − mj + uj ))

+
∑

j∈Nw

μj (uj − mj ) (13)

2In the theory, ADMM may converge and circulate around the set of optimal
solutions, but never reach one. In practice, a solution within a given error
tolerance is acceptable.

and the dual problem of (10) as

max
λ,μ≥0

D(λ, μ) := min
x∈X,u∈Û

L(x, u, λ, μ)

where the constraint set Û on u is

Û := {u ∈ RANw : u satisfies (7a) and (7b)}.
Let ua := (uaj , j ∈ Nw ) denote the vector of EV a’s decision
on which station to swap its battery. Then, the dual problem is
separable in power flow variables x as well as individual EVs’
decisions ua as

D(λ, μ) = V (λ) +
∑
a∈A

Ua(λ, μ) (14a)

where the problem V (λ) solved by the utility company is

V (λ) := min
x∈X

⎛
⎝f(x) +

∑
j∈Nw

λjwj

⎞
⎠ (14b)

and the problem Ua(λ) solved by each individual EV a is

Ua(λ, μ) := min
ua ∈Ûa

∑
j∈Nw

(αdaj − rλj + μj ) uaj (14c)

where the constraint set Ûa on ua is

Ûa :=

⎧⎪⎨
⎪⎩

uaj ∈ [0, 1] , j ∈ Nw

ua ∈ RNw : uaj = 0 if daj > γaca , j ∈ Nw∑
j∈Nw

uaj = 1.

⎫⎪⎬
⎪⎭

Note that (14c) has closed-form solutions. For instance, if there
exists a unique optimal solution to Ua(λ, μ), i.e., for any EV a
there is a unique j∗a(λ, μ) defined as

j∗a(λ, μ) := arg min
j :da j ≤γa ca

{αdaj − rλj + μj}

then the optimal solution can be uniquely determined as

u∗
aj (λ, μ) :=

{
1, if j = j∗a(λ, μ)
0, if j �= j∗a(λ, μ)

i.e., it simply chooses the unique station j∗a within EV a’s
driving range that has the minimum cost αdaj − rλj + μj .

From (13), the standard dual algorithm for solving (10) is, for
j ∈ Nw ,

λj (n + 1) := λj (n) + ρ1(n)

× [wj (n) − r(Mj − mj + uj (n))] (15a)

μj (n + 1) := max{μj (n) + ρ2(n)(uj (n) − mj ), 0 } (15b)

where ρ1(n), ρ2(n) > 0 are diminishing step sizes, and from
(14), we have

x(n) := arg min
x∈X

⎛
⎝f(x) +

∑
j∈Nw

λj (n)wj

⎞
⎠ (15c)

and for a ∈ A,

ua(n) := arg min
ua ∈Ûa

∑
j∈Nw

(αdaj − rλj (n) + μj (n)) uaj. (15d)
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Fig. 3. Communication between utility company, station operator,
and EVs.

Remark 2:
1) The x-update (15c) is carried out by the utility company

and involves minimizing a convex objective with convex
quadratic constraints. The only information that is non-
local to the utility company for its x-update is one of the
dual variables λ(n) computed by the station operator.

2) The ua -update (15d) is carried out by each individual EV.
Each EV requires both the dual variables (λ(n), μ(n))
from the station operator for its update.

3) The dual updates (15a), (15b) are carried out by the sta-
tion operator that uses a (sub)gradient ascent algorithm
to solve the dual problem maxλ,μ≥0 D(λ, μ). It requires
w(n) from the utility company and individual decisions
ua(n) from EVs a.

The communication structure is illustrated in Fig. 3. In par-
ticular, EVs are completely decoupled from the utility company
and among themselves. Unlike the ADMM-based solution, the
station operator knows only the battery swapping decisions of
EVs, but not their private information such as locations (daj ),
states of charge (ca ) or performance (γa ).

Since the relaxation (8) is convex, strong duality holds if
Slater’s condition is satisfied. Then, when the aforementioned
(sub)gradient algorithm converges to a dual optimal solution
(λ∗, μ∗), any primal optimal point is also a solution to the cor-
responding x-update (15c) and ua -update (15d) [17], [18]. Sup-
pose (x(n), ua(n), a ∈ A) indeed converges to a primal opti-
mal solution (x∗, u∗

a , a ∈ A), then typically (u∗
a , a ∈ A) is not

binary. However, the bound in Theorem 1 still holds that guaran-
tees easy discretization and suggests the final discretized stations
assignments are close to optimum.

Remark 3: The two solutions have their own advantages and
can be adapted to different application scenarios. The ADMM-
based solution requires a station operator that is trustworthy and
can access EVs’ private information. Since the station operator
optimizes station assignments on behalf of all EVs, no compu-
tation is required on each EV, and meanwhile communication is
only required between the station operator and the utility com-
pany. In contrast, the solution based on dual decomposition does

TABLE I
SETUP

(a) Distributed generator

Bus pg
j pg

j
qg

j qg
j

Cost function

1 4 0 2 −2 0.3pg 2 + 30pg

4 2.5 0 1.5 −1.5 0.1pg 2 + 20pg

26 2.5 0 1.5 −1.5 0.1pg 2 + 20pg

34 2.5 0 1.5 −1.5 0.1pg 2 + 20pg

(b) Station

Bus Location Mj mj

5 (1, 1) mj (i) A ; (ii) A/2
16 (3, 1) mj (i) A ; (ii) A/10
31 (1, 3) mj (i) A ; (ii) A/4
43 (3, 3) mj (i) A ; (ii) A/4

Fig. 4. Convergence of the ADMM. (a) λ. (b) Residual of relaxed (10c).

not require sharing EVs’ private information with the station op-
erator. It, however, necessitates computation capabilities on all
EVs. In addition, communication is needed both between the
station operator and the utility company and between the station
operator and each EV.
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Fig. 5. Convergence of dual decomposition. (a) λ. (b) μ.

IV. NUMERICAL RESULTS

We test the two distributed solutions on the same 56-bus
radial distribution feeder of Southern California Edison (SCE)
in Part I. Details about the feeder can be found in [19]. Similar
setups from Part I are adopted to demonstrate the algorithm
performance. Table I lists the main parameters.3 The number of
EVs that request battery swapping is A = 400. We simulate two
cases with different mj ’s (see Table I(b)). EVs’ current locations
are randomized uniformly within a 4 km × 4 km square area
and their destinations are ignored. We use Euclidean distances
daj and assume all EVs can reach any of the four stations. The
constant charging rate is r = 0.01 MW [20], and the weight is
α = 0.02 $/km [21]. Simulations are run on a laptop with Intel
Core i7-3632QM CPU at 2.20 GHz, 8-GB RAM, and 64-bit
Windows 10 OS.

A. Convergence

The convergence of the ADMM in case (i) is demonstrated in
Fig. 4. Fig. 4(a) and (b) shows, respectively, that the Lagrange

3The units of the real power, reactive power, cost, distance, and weight in this
paper are MW, Mvar, $, km, and $/km, respectively.

Fig. 6. Suboptimality in different cases: (a) case (i), (b) case (ii).

TABLE II
EXACTNESS OF SOCP RELAXATION (PARTIAL RESULTS FOR CASE (II))

Bus vj lj k |Sjk |2 Residual
From To

1 2 2.582 2.582 0.000
2 3 0.006 0.006 0.000
2 4 2.336 2.336 0.000
4 5 3.413 3.413 0.000
4 6 0.005 0.005 0.000
4 7 2.276 2.276 0.000
7 8 1.984 1.984 0.000
8 9 0.009 0.009 0.000
8 10 1.518 1.518 0.000
10 11 1.318 1.318 0.000

multiplier vector λ and the residual of the relaxed equality con-
straint (10c) converge rapidly. Case (ii) behaves similarly. Each
iteration that computes the three steps of (12) takes on aver-
age 0.477 s by Gurobi. For the dual decomposition algorithm,
Fig. 5(a) and (b) shows the convergence of its two Lagrange
multiplier vectors λ and μ, respectively, in case (ii). λ maintains
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Fig. 7. Average computation time of the ADMM: (a) as a function of
#EVs, (b) as a function of #stations.

the consensus between the utility company and EVs at con-
vergence, and μ guarantees (7c) is satisfied when it converges.
Dual decomposition usually takes more iterations to converge
due to the additionally required coordination among all EVs.
For case (i), results are similar except that μ remains 0 dur-
ing computation as (7c) is always satisfied. Each iteration of
the dual decomposition algorithm involves the centralized up-
date of (15a) and (15b) and the parallelized computation of
(15c) and (15d). Each iteration takes on average 0.212 s by
Gurobi.

B. Suboptimality (Comparison With Centralized Solution)

In case (i), both algorithms obtain a solution in which the
station assignments to two EVs, marked black in Fig. 6(a),
are nonbinary: u242 = [0.707 0.293 0.000 0.000] and u367 =
[0.230 0.000 0.770 0.000]. This is consistent with Theorem 1.
If we simply round u243 and u367 to binary values, the resulting
solution turns out to coincide with a globally optimal solution
computed using the centralized solution in Part I.

In case (ii), we reduce available fully charged batteries at each
station to activate (7c). Fig. 6(b) shows the solution achieved by

Fig. 8. Average computation time of dual decomposition: (a) as a func-
tion of #EVs, (b) as a function of #stations.

both algorithms. The solution turns out to be globally optimal
for the original problem (5); in particular, all station assignments
are binary. EVs, to which the station assignments are altered due
to the bound imposed on battery availability of each station, are
marked cyan in Fig. 6(b). The intuition is that an active (7c)
sometimes can help eliminate nonbinary assignments to EVs.
This is often the case in practice where battery availability is
uneven across stations.

C. Exactness of SOCP Relaxation

In most cases, that we have simulated, including cases re-
ported here, the SOCP relaxation is exact, i.e., the solutions
computed by the two distributed algorithms attain equality in
(6c), and therefore, satisfy power flow equations. Partial data
for case (ii) are listed in Table II.

D. Scalability

We follow the same setup in part I to demonstrate the scal-
ability of the two distributed algorithms, i.e., we first augment
the number of EVs, while the number of stations is fixed, and
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then, turn the other way round. The computation time that is
shown in Figs. 7 and 8 is averaged over ten simulation runs with
randomly generated cases. Approximately, the computational
effort of both algorithms increases linearly as EVs (or stations)
scale up. Compared with the centralized solution in part I, the
required computation time of the distributed algorithms is less
sensitive to the EV scale, which is intuitive, but turns out more
sensitive to the station scale. This results from the fact that the
consensus that the distributed algorithms strive toward has to be
achieved at each station. Generally, more iterations are needed
as more stations are involved.

V. CONCLUDING REMARKS

This paper is an extension of Part I that basically solves the
same optimal scheduling problem for battery swapping. Instead
of a centralized solution that requires global information, two
distributed solutions based on the ADMM and dual decomposi-
tion, respectively, are proposed. These solutions are more suit-
able for systems where the distribution grid, stations, and EVs
are operated by separate entities that do not share their private
information. They allow these entities to make individual de-
cisions but coordinate through privacy-preserving information
exchanges to jointly solve a relaxation of the global problem.
Some of the station assignments in a relaxed solution may not be
binary and need to be discretized, but we prove that their number
is small. Numerical tests on the SCE 56-bus distribution feeder
demonstrate the algorithm performance and also suggest that
the final discretized station assignments are close to optimum.

APPENDIX A
PROOF OF THEOREM 1

We refer to EV a as a critical EV if its station assignment satis-
fies uaj < 1 for all j ∈ Nw . We first show the following lemma,
and then, prove Theorem 1. Let (u, y) := (u, s, sg , v, �, S).

Lemma 1: It is always possible to find an optimal solution
(u∗, y∗) to the relaxation (8) where no critical EVs share two
stations, i.e., there do not exist a, b ∈ A and j, k ∈ Nw such that
u∗

aj , u
∗
ak , u

∗
b j , u

∗
bk > 0.

Proof of Lemma 1: Fix any (u, y) that is feasible for (8).
If uaj , uak , ub j , ubk > 0, for some a, b ∈ A and j, k ∈ Nw , we
will construct station assignments u′ that satisfy the lemma
such that (u′, y) is also feasible for (8) but has a lower or equal
objective value. This proves the lemma.

Let Ba := uaj + uak , Bb := ub j + ubk , Bj := uaj + ub j ,
and Bk := uak + ubk . The interpretation of these quantities
is that rBa and rBb are the charging loads of EVs a and b,
respectively, and rBj and rBk are their load distributions at
stations j and k, respectively. Clearly, Ba + Bb = Bj + Bk .
Without loss of generality, we can assume either case 1:
Ba ≥ Bj ≥ Bk ≥ Bb or case 2: Bj ≥ Ba ≥ Bb ≥ Bk holds.
We now construct u′ assuming case 1 holds. The construction
is similar if case 2 holds instead.

We consider four disjoint subcases and construct u′ for each
subcase.

1.1 EV a is closer to station j but farther away from station
k than b(daj ≤ db j , dbk ≤ dak): Let u′

aj = Bj , u
′
ak =

Bk − Bb, u
′
b j = 0, u′

bk = Bb , and the other variables
remain the same as in (u, y). This means that the as-
signments u′ send EV b to station k but not station j,
and also increase the likelihood of EV a going to station
j while decreasing that to station k. Since

u′
aj + u′

ak = Bj + Bk − Bb = uaj + uak

u′
b j + u′

bk = Bb = ub j + ubk

u′
aj + u′

b j = Bj = uaj + ub j

u′
ak + u′

bk = Bk − Bb + Bb = uak + ubk

(u′, y) is feasible (8). Moreover,
∑

c=a,b

∑
i=j,k

dciu
′
ci

= dajBj + dak(Bk − Bb) + dbkBb

= daj (uaj + ub j) + dak(uak − ub j) + dbk(ub j + ubk)

≤
∑

c=a,b

∑
i=j,k

dciuci − ub j(dak − dbk)

≤
∑

c=a,b

∑
i=j,k

dciuci

where the first inequality uses daj ≤ db j and the second
inequality uses dbk ≤ dak . Therefore, (u′, y) has a lower
or equal objective value than (u, y).

1.2 EV b is closer to station j but farther away from station
k than a(db j ≤ daj , dak ≤ dbk): This case is symmetric
to subcase 1.1.

1.3 EV a is closer than b to both stations (daj ≤ db j , dak ≤
dbk): We either have db j − dbk ≤ daj − dak or db j −
dbk > daj − dak . In the former case, let u′

aj = Bj −
Bb, u

′
ak = Bk , u′

b j = Bb, and u′
bk = 0. Then,

∑
c=a,b

∑
i=j,k

dciu
′
ci

=
∑

c=a,b

∑
i=j,k

dciuci + (dak − dbk + db j − daj )ubk

≤
∑

c=a,b

∑
i=j,k

dciuci.

Similar to subcase 1.1, (u′, y) is feasible and has a
lower or equal objective value. In the latter case, let
u′

aj = Bj , u
′
ak = Bk − Bb, u

′
b j = 0, and u′

bk = Bb .
Then, (u′, y) is feasible and has a lower objective value.

1.4 EV b is closer than a to both stations (db j ≤ daj , dbk ≤
dak): This case is symmetric to subcase 1.3.

This completes the proof of the lemma. �
Proof of Theorem 1: Fix an optimal solution (u∗, y∗) to the

relaxation (8) that satisfies Lemma 1. By definition, a critical EV
splits its charging load between at least two different stations.
An upper bound on the number of critical EVs is, therefore, the
maximum number of critical EVs that we can assign the Nw

stations to without violating Lemma 1.
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Consider the set C1 of critical EVs under the assignments
u∗ that split their charging loads between station i = 1 and
(at least) another station j = 2, . . . , Nw . Lemma 1 implies that
there are at most Nw − 1 critical EVs in C1 since the assign-
ments u∗ are optimal. Consider next the set C2 of critical EVs
not in C1 that split their charging loads between station i = 2
and (at least) another station j = 3, . . . , Nw . There are at most
Nw − 2 critical EVs in C2 . Similarly there are at most Nw − i
critical EVs in the set Ci that are not in ∪i−1

k=1Ck that split their
charging loads between station i and (at least) another station
j > i. Hence, the maximum number of such critical EVs is
(Nw − 1) + (Nw − 2) + · · · + 1 = 1

2 Nw (Nw − 1). This com-
pletes the proof of Theorem 1. �
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