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Abstract—This paper proposes a real-time algorithm that
recommends battery swapping stations (BSSs) to electric taxis
(ETs) that need their batteries swapped. The algorithm takes
into consideration available batteries at BSSs, driving ranges of
ETs and the current traffic conditions, etc, in order to avoid long
queues at BSSs. We consider a basic model that assumes past
decisions are perfectly executed, and formulate an optimal ET-
to-BSS assignment problem. This problem is an integer program
and therefore hard to scale. For real-time implementation, we
approximate the optimal assignment problem by a repeated po-
tential game and propose an iterative best response algorithm to
compute ET-to-BSS assignments. Preliminary numerical results
suggest that our heuristic algorithm solves the optimal assignment
problem approximately.

I. INTRODUCTION

The widespread adoption of electric vehicles (EVs) will

have a large impact on not only our transportation network,

but also our power systems [1]. On the one hand, EVs are

large loads that will add stress to the grid if uncontrolled. On

the other hand, these loads are flexible and can function as

storage that helps reduce operational costs and improve grid

stability with proper control [2], [3]. They are also mobile that

can potentially help relieve congestion both on the road and

on the grid with real-time recommendations of EVs’ refueling

places [4], [5].

Compared with private EVs, the electrification of taxis is

developing faster in China because of governmental promotion

[6]. Unlike private EVs that are usually driven only a couple

hours a day, electric taxis (ETs) need to operate continuously

throughout most of the day. Hence battery swapping is more

suitable than charging for ETs [4], [7]–[12]. [4] proposes

an online routing and battery reservation method for EVs

with swappable batteries to minimize the average delay of all

EVs. [7] investigates the optimal charging schedule of a BSS

for electric buses. Due to the periodicity of bus operations,

the schedule is easier to implement. [8] designs a dynamic

operation model of a BSS in the power market based on short-

term battery managements, and proposes a market strategy

for the BSS. A framework for the optimal design of a BSS

in distribution systems is presented in [9]. A life cycle cost

criterion is proposed for the optimal cost-benefit analysis and

safety operation of the BSS. The battery swapping process

of a BSS is modeled by a mixed queueing network with an

open queue of EVs and a closed queue of batteries in [10].

The unique steady-state distribution of the queueing network

is obtained by solving its balance equations.

One of the current difficulties with ETs is the lack of real-

time information to help them choose a BSS to swap their

batteries. As a result they typically go to a closest BSS when

they need a battery to swap, sometimes only to find a long

queue of ETs waiting for battery swapping at the BSS. This

problem is currently impeding the uptake of ETs and has

not been well addressed, to the best of our knowledge. An

advantage of ETs is that they are usually under centralized

management which allows communications between a central

operation center and each ET. Therefore, in this paper we

propose a real-time algorithm that recommends BSSs to ETs

in need of battery swapping.

Our contributions are:

• A formulation of an optimal ET-to-BSS assignment prob-

lem as an integer program.

• An approximation of the optimal assignment problem

as a repeated potential game and a simple iterative best

response algorithm to compute ET-to-BSS assignments.

The remainder of this paper is organized as follows. Sec. II

describes our system model and formulates the optimal ET-

to-BSS assignment problem. Sec. III proposes the potential-

game based heuristic algorithm to approximately solve the

assignment problem. Sec. IV presents numerical results to

demonstrate the performance of our heuristic algorithm. Fi-

nally, Sec. V concludes.

II. SYSTEM MODEL

We take into account a basic model that can be extended to

accommodate a more practical scenario by incorporating other

factors. Consider a group of ETs managed by an operation

center which provides recommendations of BSSs for all ETs in

need of battery swapping. Meanwhile, consider a slotted finite

time horizon t ∈ T := {1, . . . , T}, and the recommendation

algorithm is run at each time t. Suppose there are J BSSs,

j ∈ J := {1, . . . , J}, which only serve ETs. BSS j is located

at position yj , where yj is a two-dimensional coordinate on a

plane. At each time t, the number of (fully-charged) batteries

that are available for swapping is nj(t). Suppose at each time

t, there are I(t) ETs, i ∈ I(t) := {1, . . . , I(t)}, which the

recommendation algorithm has to assign to certain BSSs for

battery swapping. Note that only those ETs whose states of
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charge (SoCs) have dropped below a threshold need to be

assigned. ET i is characterized by a tuple (xi(t), di(t), bi(t)),
where xi(t) is its current position, di(t) is its current des-

tination, and bi(t) is its current SoC. The recommendation

algorithm determines at each time t for each ET i the BSS

j at which it should swap its battery, in order to achieve a

certain social optimality, as we now explain.

A. Constraints

Let Mij(t) represent the assignment:

Mij(t) =

{
1 if ET i is assigned to BSS j

0 otherwise

We first assume that each ET is assigned to a single BSS, i.e.,⎧⎨
⎩

∑
j∈J

Mij(t) = 1, ∀i ∈ I(t)

Mij(t) ∈ {0, 1}, ∀i ∈ I(t), ∀j ∈ J

(1)

Hence the location of the BSS that ET i is assigned to at time

t, denoted by yi(t), can be expressed as

yi(t) :=
∑
j∈J

yj Mij(t)

Let n̂j(t) denote the forecast number of available batteries

at BSS j at time t, which is assumed to be given according

to batteries’ charging states. It is increased when a battery

at the BSS becomes fully charged and is decreased when a

battery is reserved by the assignment M := [Mij(t)]∀i,j,t.
More precisely, at each time t let τ(t, σ, δ) be the (estimated)

travel time from origin σ to destination δ at time t, i.e., the

ET at origin σ at time t should arrive at destination δ at time

t+ τ(t, σ, δ). We assume the mapping defined by the function

τ(t, σ, δ) is given based on an online travel time estimator with

real-time traffic information, e.g., Google Maps Navigation.

According to the assignment M(t) := [Mij(t)]∀i,j at time t,
ET i will arrive at a future time τij(t) := t+ τ(t, xi(t), yj) at

BSS j and reduce its forecast n̂j(t + τ(t, xi(t), yj)) by one.

Let τ−1
ij (t) denote the inverse function of τij(t), i.e., τ−1

ij (t)
is the time at which ET i that arrives at BSS j at time t was

assigned. Hence n̂j(t) evolves according to

n̂j(t+ 1) = n̂j(t) + cj(t)−
∑

i∈I(t)
Mij(τ

−1
ij (t)) (2)

where cj(t) is the forecast number of batteries that become

fully charged at BSS j at (the beginning of) time t, and I(t) :=⋂
α≤t I(α), which is the set of all ETs that have been assigned

by t. Let n̂ := [n̂(t)]∀t := [n̂j(t)]∀j,t be the vector of forecast

numbers of available batteries for all BSSs at all times, which

is the key impact parameter.

Only those BSSs that are within the driving range of ET

i will be taken into consideration as its recommendation

candidates. This driving range mainly depends on ET i’s SoC

bi(t) and the traffic profile which we represent by a generic

function1:

ri(t) := ri(bi(t), xi(t))

Only BSSs within this range are eligible for recommendation

to ET i, so Mij(t) must satisfy

|xi(t)− yi(t)| ≤ ri(t), ∀i ∈ I(t) (3)

where |·| is a measure of distance between two locations xi(t)
and yi(t). This can be the shortest (path) distance on the road

network (more realistic) or the straight line distance between

these two points (simpler).

B. Objectives

Given an assignment M(t), one of the costs to ET i is the

extra distance it has to travel to have its battery swapped at

BSS j:

|xi(t)− yi(t)|+ |yi(t)− di(t)| − |xi(t)− di(t)|
If a ET does not have a destination di(t) at time t, we can

ignore the second term |yi(t)−di(t)| in the objective function.

Since the last term is independent of the assignment matrix

M(t), we can use |xi(t)− yi(t)|+ |yi(t)− di(t)| as a proxy

for this cost.

The waiting time of ETs is also a cost when computing

the assignment M(t). It may be better to assign to an ET a

BSS a little farther away to avoid waiting in a long queue at

a nearby BSS. We use the ET queue length to represent this

cost. To this end, redefine n̂j(t) to be the number of available

batteries ready for swapping minus the number of ETs waiting

for battery swapping. Hence n̂j(t) = 5 means there are 5

batteries ready for swapping at time t; n̂j(t) = −3 means

there are 3 ETs waiting. Then the ET queue length at BSS j
at time t is −min{n̂j(t), 0}.

C. Problem formulation
We are interested in the following problem:

min
M(t)

∑
i∈I(t)

⎛
⎝
∣∣∣∣∣∣
xi(t)−

∑
j∈J

yjMij(t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈J

yjMij(t)− di(t)

∣∣∣∣∣∣

⎞
⎠

−
∑
j∈J

T∑
s=t

αj(s)min {n̂j(s), 0}

s.t. n̂j(t+ 1) = n̂j(t) + cj(t)−
∑

i∈I(t)

Mij(τ
−1
ij (t)),

∀j ∈ J, t ∈ T∣∣∣∣∣∣
xi(t)−

∑
j∈J

yjMij(t)

∣∣∣∣∣∣
≤ ri(t), ∀i ∈ I(t)

∑
j∈J

Mij(t) = 1, ∀i ∈ I(t)

Mij(t) ∈ {0, 1}, ∀i ∈ I(t), j ∈ J (4)

1In general, the driving range depends also on the energy required on the
path, but we approximate this by dependence only on its current location
xi(t).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
978-1-5090-4168-8/16/$31.00 ©2016 IEEE 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 04:48:05 UTC from IEEE Xplore.  Restrictions apply. 



where αj(s) ≥ 0, j ∈ J, s = t, . . . , T , are the weights that

depend on BSS j and time s, e.g., smaller weights on future ET

queue length because of uncertainty. The problem (4) jointly

minimizes the overall extra travel distance and queue length,

with consideration of ETs’ driving ranges and traffic-based

travel time.

Note that problem (4) are decoupled across time, i.e., an

optimal M∗(t) is determined at each time t separately. In

particular, at time t, we do not change the earlier decisions

M∗(s), s = t−1, t−2, . . . . These earlier decisions, however,

do affect the decision M(t) at time t and they are parameters
in problem (4). In addition, in practice the measured nj(t) can

be used to adjust the forecast n̂j(t), so are other parameters.

As a result, at each time we can carry out online optimization

to enable real-time implementation.

III. POTENTIAL-GAME BASED HEURISTIC ALGORITHM

Problem (4) is an integer program that is hard to scale to a

large number of ETs. For real-time application, we develop a

heuristic algorithm that is efficient and seems to perform well,

as we now explain.

We first simplify problem (4) to shorten the time involved

in the definition of I(t) :=
⋂

α≤t I(α). As defined I(t) is

the set of all ETs that have been assigned by time t but have

not arrived at their BSSs before time t. For simplification,

we redefine I(t) :=
⋂

t−tm≤α≤t I(α), which is the set of

all ETs that have been assigned between time t − tm and

t, i.e., we ignore ETs that have been assigned before time tm
that may impact our decision M(t) at time t. Note that tm
needs to be empirically chosen, since a small tm may omit

already-assigned ETs that are expected to arrive at BSS j at

time t or later, while a large tm will complicate the real-time

computation. Moreover, with tm we do not need to take into

account the impact of the current decision M(t) on future

forecast number of available batteries at each BSS after time

t+ tm. Therefore, the time range of (4) is narrowed and thus

the computational complexity is significantly reduced.

Next we design a heuristic algorithm to obtain a suboptimal

solution. The key idea is to compute for each ET a weight

corresponding to its every possible BSS candidate. The weight

measures the marginal cost added to the objective value of

problem (4) if an ET is assigned to a certain BSS based on the

current evolution of available batteries. Then we adjust each

ET’s assignment iteratively according to its real-time weights

to finally reach a suboptimal solution.

Note that (1), (3) are completely decentralized, while (2)

couples all the current decisions. Hence in terms of (1) and

(3), we can first pick out for each ET i all the possible

BSS candidates j ∈ Ji. Given [n̂j(t)]∀j , [cj(s)]∀j,s=t,...,t+tm

and earlier decisions [M∗(s)]s=t−1,...,t−tm , the evolution of

available batteries without the current assignment M(t) is pre-

determined from (2), which is denoted as [n̄0
j (s)]∀j,s=t,...,t+tm .

Next we assign ETs i ∈ I(t) to reserve certain batteries at

BSSs j ∈ J in a heuristic way that aims to minimize the

overall travel distance and queue length.

First, for each ET i ∈ I(t) and each of its BSS candidate

j ∈ Ji, we compute a weight w0
ij(t) = |xi(t)− yj | +

|yj − di(t)|−αj(τij(t))min{n̄0
j (τij(t)), 0}. A smaller weight

w0
ij(t) implies a smaller increment to the objective value of

problem (4) when ET i is assigned to BSS j (at time t). Then

all the BSS candidates j ∈ Ji are ranked in increasing order of

w0
ij(t). Hence each ET i has a sorted list of BSS candidates

with a priority given to smaller weights. We first select the

BSSs that rank first in each ET’s list and use them as the

initial assignments M0(t) for all ETs.

Suppose the initial assignments are implemented,

then the evolution of available batteries is altered into

[n̄1
j (s)]∀j,s=t,...,t+tm . Based on the newly-updated available

batteries, the ET queue length of each BSS at each time is

known and may influence the values of some weights, thus

rendering the initial assignments less efficient. Hence we

iteratively adjust the assignment of each ET by re-calculating

its weights2 and re-selecting the first-rank BSS candidate

from its updated list according to the current ET queue length

of each BSS. For example, we first adjust the assignment of

ET i. Its new weights [w1
ij(t)]j∈Ji are re-calculated to form

an updated list for ET i. If its first-choice BSS candidate is

changed, then the initial assignments M0(t) turn into M1(t)
and a new evolution of available batteries [n̄2

j (s)]∀j,s=t,...,t+tm

emerges accordingly. Every ET’s adjustment yields a new

assignment and then a new evolution of available batteries.

See Algorithm 1 for details.

Theorem 1: Algorithm 1 converges to an equilibrium

M(t).
Proof: See details in Appendix A.

IV. NUMERICAL RESULTS

We test the proposed heuristic algorithm with a simple case

to illustrate its effectiveness. Consider a 6 km × 6 km plane

with 3 randomly distributed BSSs. Their coordinates on the

plane are (3.27,0.96), (0.47,4.59) and (2.79,2.09), respectively.

At a certain time t, suppose 12 ETs need battery swapping.

The characters of each ET, i.e., its current position, destination

and SoC are randomly generated according to certain proba-

bility distributions. The location setup is shown in Fig. 1(a).

For simplicity, let | · | denote the Euclidean distance, and the

function τ(t, σ, δ) is set to be directly proportional to |σ− δ|.
Assume the driving range of each ET is adequate to cover the

whole square plane, so all ETs have the 3 BSSs as candidates.

In addition, set tm = 3 and other parameters are given in

TABLE I.

As shown in Fig. 1(b), the proposed heuristic algorithm

computes an assignment for each ET so that it can reach

its destination via the recommended BSS to get its battery

swapped without a large extra travel or waiting in a long queue.

Fig. 2 validates the performance of the proposed heuristic

algorithm. Within 4 iterations, the objective value quickly

converges and its equilibrium value is very close to the optimal

2Note that the re-calculation of each ET i’s weights is based on the current
evolution of available batteries, from which the impact of ET i’s assignment
needs to be removed.
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Algorithm 1: Heuristic algorithm

1 Input: [n̂j(t)]∀j , [cj(s)]∀j,s=t,...,t+tm , and

[M∗(s)]s=t−1,...,t−tm ;

2 Output: M(t);
3 Initialization: set index k = 1, pick out [Ji]∀i,

pre-determine [n̄0
j (s)]∀j,s=t,...,t+tm , and compute

[w0
ij ]∀i,j ;

4 Generate for each ET i a sorted list of BSS candidates in

increasing order of w0
ij ;

5 Select the first-rank BSS candidates from all ETs’ lists to

form M0(t);
6 Update [n̄1

j (s)]∀j,s=t,...,t+tm based on M0(t);
7 while any ET makes changes to M(t) do
8 for ET i ∈ I(t) do
9 Re-calculate [wk

ij(t)]j∈Ji to update its list;

10 if the first-rank BSS candidate is changed then
11 Re-select the new first-rank BSS candidate to

form Mk(t);

12 Update [n̄k+1
j (s)]∀j,s=t,...,t+tm based on

Mk(t);
13 M(t) ← Mk(t);
14 k ← k + 1;

15 else
16 Stick to the previous selection;

17 end if
18 end for
19 end while

TABLE I
PARAMETER SETUP

Parameter

Time
t t+ 1 t+ 2 t+ 3

αj 1 1 1 1

n̄0
1 3 3 0 3

n̄0
2 2 3 3 0

n̄0
3 1 1 1 -1

one, which is obtained by a brute force algorithm. As we

can see, the performance gap between the proposed heuristic

algorithm and the brute force algorithm is rather small, while

the former takes much less computation time than the latter,

which has a computational complexity of O(JI).

V. CONCLUSION

This paper proposes a real-time recommendation algorithm

of BSSs for ETs. Taking into account available batteries at

BSSs, driving ranges of ETs and the current traffic conditions,

etc, the algorithm attempts to minimize ETs’ extra travel

distance and avoid long queues at BSSs. A basic model that

assumes past decisions are perfectly executed is considered

to formulate an optimal ET-to-BSS assignment problem as an

integer program. We approximate the problem by a repeated

x (km)
0 1 2 3 4 5 6

y 
(k

m
)

0

1

2

3

4

5

6
BSS
ET
destination

(a)

x (km)
0 1 2 3 4 5 6

y 
(k

m
)

0

1

2

3

4

5

6
BSS
ET
destination

(b)

Fig. 1. (a) Location setup. (b) Assignments.

Iteration number
1 2 3 4

O
bj

ec
tiv

e 
va

lu
e

48

49

50

51
proposed algorithm
optimal value

Fig. 2. Convergence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
978-1-5090-4168-8/16/$31.00 ©2016 IEEE 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 04:48:05 UTC from IEEE Xplore.  Restrictions apply. 



potential game and propose an iterative best response algo-

rithm to compute ET-to-BSS assignments. Numerical results

validate the performance of our heuristic algorithm.

APPENDIX A

PROOF OF THEOREM 1

Algorithm 1 can be viewed from the perspective of a repeat-

ed potential game [13]. I(t) ETs share a set of J BSSs. Each

ET i has its own BSS candidate list Ji, which is equivalent to a

strategy set. The ET queue at a BSS corresponds to congestion

and is dependent on the number of ETs assigned to the BSS.

Moreover, in our model the extra travel distance, which is

independent for each ET, is taken into account.

Therefore, (4) is reduced to a potential game as follows:

1) Player set I(t): it consists of the I(t) ETs in need of

battery swapping.

2) Strategy space Z: each ET i selects a strategy ji,
i.e., a BSS candidate, from its strategy set Ji. Then

Z := ×i∈I(t)Ji represents the strategy space of the game.

Denote z = (ji, j−i) as the strategy vector, where j−i is

all the other ETs’ strategies except ET i.
3) Cost function set {Ci(z)}i∈I(t): each ET i’s individual

cost is the weighted summation of the travel distance and

queue length it has to bear, i.e.,

Ci(z) = |xi(t)− yji |+ |yji − di(t)|
− αji(τiji(t))min{n̄z

ji(τiji(t)), 0}
(5)

Note that ET i’s cost Ci(z) is dependent on strategy

vector z.

The procedure of Algorithm 1 is equivalent to applying an

iterative best response algorithm in a repeated game frame-

work, where ETs take turn to minimize their costs by defining

a strategy and updating it based on the other ETs’ strategies,

until an equilibrium is reached. It can be proven that such

an equilibrium, i.e., a pure Nash equilibrium, exists. First,

we define a potential function based on Rosenthal’s potential

function [13]. For any strategy vector z, let

Φ(z) =
∑
j∈J

[∑
i∈Izj

(|xi(t)− yj |+ |yj − di(t)|)

−
tm∑
s=t

−1∑
k=n̄z

j (s)<0

αj(s)min{k, 0}
] (6)

where Izj is the set of ETs that are assigned to BSS j under

strategy vector z and n̄z
j (s) is the evolution of available

batteries after strategy vector z is implemented. Note that for

the second item in the square brackets of (6), we neglect the

cases where n̄z
j (s) ≥ 0 because min{k, 0} = 0 for all k ≥ 0.

Lemma 1: Suppose the strategy vector changes from z to

z′ with an improvement step of ET i reducing its cost by

Δ > 0, then Φ(z′) = Φ(z)−Δ.

Proof: (6) can be calculated by inserting the ETs one

after another in any order and summing the costs of the ETs

at the time point of their insertion. Let ET i be the last ET that

we insert when calculating Φ(z), then the potential added due

to the insertion of ET i corresponds to its cost under strategy

vector z. Hence, when z is altered into z′ with an reduction

of Δ in ET i’s cost, Φ is decreased by Δ as well.

Lemma 1 shows if a single ET reduces its cost by re-

selecting a strategy, Φ is decreased by exactly the same

amount. Note that

1) Δ ≥ 0 and its possible values are discretized and finite.

2) For any strategy vector z, Φ(z) is bounded as

∑
j∈J

[ ∑
i∈I(t)

(|xi(t)− yj |+ |yj − di(t)|)

−
tm∑
s=t

−1∑
k=n̄0

j (s)−I(t)<0

αj(s)min{k, 0}
]
≥ Φ(z) ≥ 0

(7)

Consequently, the number of improvements is upper-bounded

and hence finite. Then for the repeated potential game de-

scribed above, every sequence of improvement steps is finite,

which implies the existence of at least one pure Nash equilib-

rium. Hence Algorithm 1 converges to an equilibrium M(t).
This completes the proof of Theorem 1.
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