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Abstract—This paper investigates joint scheduling problem
of large-scale smart appliances and batteries (e.g., in a smart
building), to minimize electricity payment, user's dissatisfaction
and battery loss under kinds of constraints. Due to the binary
nature of charge and discharge states of battery, this problem is
formulated as a constrained mixed-integer nonlinear program.
In order to solve it efficiently, a distributed mixed optimization
approach is proposed. First, Lagrangian relaxation is applied to
decompose the original problem into two sets of subproblems, each
of which corresponds to scheduling on appliance/battery. Then,
the battery scheduling subproblem is formulated as a mixed-in-
teger linear program and tackled by Benders decomposition. The
main advantages of the proposed approach are the distributed
implementation and low computational complexity, as shown by
simulations.
Index Terms—Benders decomposition, demand-side manage-

ment, distributed mixed optimization, Lagrangian relaxation.

I. INTRODUCTION

I N RECENT years, the energy demand keeps increasing and
brings great burden to the power grid. Demand-side man-

agement (DSM) is an effective solution by smartly scheduling
the power usage. It plays a key role in smart grid and has been
extensively investigated [1]–[4]. DSM provides various incen-
tive strategies and pricing schemes such as real-time pricing
(RTP) [5] and time-of-use pricing (TOU) [6], so that the end
users can reduce or shift load from peak periods to off-peak
periods. Consequently, it can reduce costs of power plants by
smoothing out the peak demand, and produce financial benefits
for end users.
In particular, it is well recognized that introducing battery

into DSM scheme will render load scheduling more effective,
as the battery provides extra flexibility to the entire system [7].
In order to reduce payment of end users, it is a common prac-
tice to charge the battery and store more energy during low price
periods, while discharge the battery and supply power to other
appliances during high price periods. However, it is notable that
charging and discharging of battery are two distinct processes,
which, therefore, need to be treated separately by introducing
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binary variables to represent the states of charge and discharge.
Some previous studies [7]–[10] have already investigated joint
scheduling on small-scale appliances and batteries. In [7], a
framework making use of an event driven model predictive con-
trol (MPC) approach is proposed to meet the real life dynamics
of a household and minimize the consumer's daily energy cost
by evaluating the best time to run of appliances and the optimal
evolution of battery level of charge. A distributed scheduling
system based on artificial neural networks in a house equipped
with local solar panels and a storage unit is considered in [8].
The system can schedule the energy consumption of appliances
for the next 24 h, but fails to operate in a real-time frame-
work. [9] proposes an appliance scheduling method for residen-
tial building energy management controllers by which thermal
appliances are scheduled smartly together with thermal mass
storage to hedge against high prices and make use of low-price
time periods. In addition, optimization models used to manage
everyday energy load for both single and multi-user cases are
proposed in [10], taking into account distributed energy sources
and batteries. However, in many occasions, e.g., smart building,
the user may be equipped with a large number of appliances and
batteries, such that the optimization variables will be greatly in-
creased and the joint scheduling may become very time con-
suming or even impractical.
This paper proposes a new approach that can solve the joint

scheduling problem in a distributed way and thus is suitable for
large-scale appliances and batteries. In addition, we improve the
battery model and consider battery losses in charge and dis-
charge processes. The user's dissatisfaction is also taken into
account. At last, joint scheduling on large-scale appliances and
batteries becomes a constrained mixed-integer nonlinear pro-
gram (MINP), which is generally very hard to solve.
Our main contributions focus on an efficient solution to the

constrained MINP, which can be summarized as follows:
1) To deal with the coupling constraints, the joint scheduling

problem is decoupled into two sets of subproblems through
Lagrangian relaxation (LR) [11]. Each subproblem corre-
sponds to scheduling on appliance/battery. LR enables dis-
tributed implementation of optimization algorithms, which
greatly reduces computational complexity.

2) The battery scheduling subproblem is formulated as a
mixed-integer linear program, which is efficiently tackled
by Benders decomposition. Benders Decomposition is
also realized in parallel computation, which reduces time
of calculation.

The paper is organized as below. Section II describes system
model and problem formulation. Section III divides joint sched-
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Fig. 1. Energy and information exchange in residential DSM.

uling problem into two sets of subproblems via LR. The solu-
tions to battery scheduling are given in Section IV, followed by
performance verification through simulations in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider the scenario depicted in Fig. 1. The
user, e.g., a smart building, is equipped with a large number of
appliances and batteries. Each appliance/battery is controlled by
a local controller (LC), which can communicate independently
with the smart meter through a local area network (LAN) [11].
The smart meter acts as a central controller that coordinates all
appliances and batteries. It is assumed that the batteries can store
energy from the grid during charging process, and supply energy
to other appliances during discharging process. We do not con-
sider the situation that the batteries transmit energy back to the
grid.
Let the set denote the equally slotted

time horizon of a day, and assume that for any time slot the
electricity price , energy consumption rates of appliances,
charging/discharge rates of batteries keep constant during that
time slot. Meanwhile, assume to be known in advance.

A. Appliance Model

In general, smart appliances can be classified into
non-shiftable ones with fixed load , and shiftable ones that
can be scheduled [7] in this paper. Let denote the set of
shiftable appliances. For each shiftable appliance , its
energy consumption vector is , where is
a real number denoting the energy consumption of appliance
at time slot .
Then, let denote the available working in-

terval for appliance . In order to finish a given task, appliance
has to consume at least units of energy, which can be for-

mulated as a time coupling constraint [12]:

(1)

More detailed models of electric appliances commonly found in
a household have been investigated in [13] and we shall extend
the results of this paper to those models in our future work.
Meanwhile, should also meet the upper and lower bounds

(2)

Another important factor to be considered is the user's sat-
isfaction. We assume each appliance has a target consumption
amount at slot , and the dissatisfaction can be modeled as
a convex function [14].

B. Battery Model

Let denote the set of batteries. Although the user has mul-
tiple batteries with different characteristics, it is apparent that
the charge/discharge states of all batteries are identical at one
time slot. Thus, we do not consider the case that one battery is
charging while another is discharging simultaneously.
A pair of binary variables is introduced to

denote the charge and discharge states of the battery set at time
slot . or implies the charging or discharging
phase, with the following constraint [10]:

(3)

The charge and discharge rates for battery at time slot
are denoted by continuous variables and . They cannot
exceed the electrical limits as follows:

(4a)
(4b)
(4c)

where and are the maximum charge and discharge
rates.
Let denote the energy level of battery , which is bounded

as

Meanwhile, the dynamics of is governed by [10]

where and are the charge and discharge efficiency. Note
that the dynamics can be transformed into

where is the initial battery level of battery . Then for
, we can get

(5a)

(5b)
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As both charging and discharging actions will result in a cer-
tain amount of battery loss, the batteries should not be used im-
moderately for optimal scheduling purpose. Here, the battery
loss is defined as follows for battery with weighting factors

and [15]:

C. Energy Management Problem
At time slot , the balance between the supply and demand

of the system can be written as

(6)

where denotes the power purchased from the grid, with the
upper and lower bounds

(7)

Substituting (6) into (7), we can obtain a constraint coupling all
appliances and batteries together

(8)

Define an matrix , a ma-
trix , and a matrix

, where .
Thus, the ultimate goal of the energy management problem is
to simultaneously minimize electricity payment, user's dissat-
isfaction and battery loss by adjusting , and , as follows:

(9)

(1) (2) (3) (4a) (4b) (4c) (5a) (5b) (6) (8)

where is electricity payment and is the
weighting factor of the user's dissatisfaction. Clearly, the load
scheduling problem is a constrained mixed-integer nonlinear
program (MINP), which cannot be directly solved via conven-
tional methods. To this end, this problem will be solved by the
proposed approach which uses the techniques of dual decom-
position and Benders decomposition. Next, we will decompose
this problem into two sets of subproblems.

III. DUAL DECOMPOSITION

In this section, a detailed description of dual decomposition
via LR is presented for solving primal problem (9) and the
summary of the algorithm is made at the end.

A. Lagrangian Relaxation
Note that the constraint (8) couples the variables across all

appliances and batteries, which undoubtedly increases the com-
putational difficulty. Thus, LR is introduced to decouple (9) into

two sets of subproblems: one for single appliance scheduling
and the other for battery scheduling.
Firstly, define the Lagrange multiplier vectors as

and . Note that can be
substituted using (6), then the Lagrangian is

where ,
and

is independent of , and .
Then, due to the separable property, the dual function is

where

Note that primal problem (9) has been divided into two
sets of subproblem: one is scheduling a single appliance, and
the other is scheduling the battery set [since in constraints (3),
(4a) and (4b) couples all batteries together]

(10)

(11)

Finally, the dual problem is to maximize the dual function
over and

(12)

Since the binary variable exists in primal problem (9), only
weak duality is ensured by LR, and the duality gap exists. That
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is, holds for each feasible solution and indeed be-
comes the lower bound of the solution to [16].

B. Subgradient Method
To solve (12), Lagrangian multipliers are adjusted by subgra-

dient method that is an iterative process as follows [17]:

(13)

where is the iteration index, are the step
sizes adjusting convergence rate, and are subgra-
dients of dual function with respect to , respectively,

where and can be obtained by solving
subproblems (10) and (11). Since the concavity of dual
problem (12) always holds, the subgradient method is guaran-
teed to obtain the optimal Lagrangian multipliers. The dual de-
composition algorithm is summarized as Algorithm 1.

IV. SUBPROBLEM SOLUTION
In this section, optimization methods are introduced to solve

the battery scheduling subproblem. The single appliance sched-
uling (10) is a classical convex problem which can be readily
solved by standard convex optimization techniques [16]. Con-
sequently, the difficulty of solving load scheduling lies on the
battery scheduling because of integer variables.

A. Battery Scheduling
The battery scheduling subproblem (11) is a mixed-in-

teger linear program (MILP), which is in general hard to tackle.
Since Benders decomposition [18] is an effective method to
solve MILP with guaranteed global optimality, we design
parallel computation based on it. That is, integer variables are
solved at battery central controller, while continuous variables
are solved at each battery's local controller synchronously,
so that the computational burden can be greatly reduced. A
detailed description of Benders decomposition is presented
below for battery scheduling and the summary of the algorithm
is made at the end.

The battery scheduling problem is formulated as follows:

(14)

where and .

Denote the optimal solution as and and the optimal ob-
jective value as . Note that three types of constraints appear
in MILP: (3) contains only integer variables; (4c), (5a) and (5b)
contain only continuous variables; while (4a) and (4b) contain
both integer and continuous variables. Clearly, finding the op-
timal integer is the most critical part of MILP. When integer
variables are determined, MILP reduces to a common Linear
Programming (LP) which can be solved as routine. Therefore,
once is found, is also readily obtained.
Benders decomposition is an iterative method to solve MILP

and the intuition is as below [19]. First, MILP is decomposed
into a master problem (MP) and a subproblem (SP). MP is an
integer programming problem, which aims at finding integer
variables by considering only integer constraints but ignoring
continuous constraints. When integer variables are found, SP is
an LP to find the associated optimal continuous variables. Then,
MP is modified in order to find more suitable integer variables,
by adding new constraints to shrink the search/feasible region.
The global optimal solution of MILP can be guaranteed through
this iterative process [18].
In detail, MP is formulated as

(15)

where is the lower bound of , because the objective
function of (15) is identical to that of (14), but (15) excludes
the constraints with continuous variables. Both feasibility and
infeasibility constraints are integer constraints, which help find
more suitable integer variables. More details of applying them
will be presented by (22) and (23) later on.
As the integer variables have already been obtained by

solving MP, SP contains only continuous constraints and vari-
ables which becomes an LP problem as follows:

(4 )
(4 ) (5 ) (5 ) (16)

where is the upper bound of MILP, because obtained
by MP may not be optimal yet.
Clearly, lies between and , i.e.,

. By performing iterations between MP and SP,
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both and will be updated and will be found
eventually when

(17)

The details of iterative process are stated below.
Step 1: Initialization
Set iteration index and .

Set infeasibility and feasibility constraints to null. Choose one
feasible which satisfies the integer constraint (3).
Step 2: Solving SP (at Iteration )
Note that without the variable coupling all batteries to-

gether, SP (16) can be decoupled into primal SPs for each
battery

(18)

Define and as dual variables for
the corresponding constraints (4a), (4b), (5a) and (5b) at slot ,
and let be their vector form over .
Then, the Lagrangian for primal SP (18) is

Note that

Thus the Lagrangian for primal SP (18) can be rewritten as

(19)

To remove integer variables from feasible region of primal
SP (18), we define the corresponding dual SP through (19):

(20)
In dual SP (20), integers and have already been
solved previous MP, while are con-
tinuous variables to be solved through LP.
Step 3: Modifying and Solving MP (at Iteration )
In many cases the integer variables are not optimal,

however they can be modified by adding new integer con-
straints into MP, so that the feasible region shrinks and the
new integer gradually approaches the optimal . The
new constraints are constructed based on the solution of all
dual SPs (20), as detailed below. It is notable that in this step,

are known parameters, while
and are integer variables to be solved, for

example, by branch and bound method.
1) Any dual SP (20) is infeasible. MILP has either no feasible

solution or an unbounded solution, so the original MINP
has no physical solution.

2) All dual SPs (20) are bounded. Thus, all primal SPs (18)
are feasible due to duality, but . That is,

is not optimal. In order to improve the solution in this
iteration, cannot be worse than , in the sense
that the new is larger than previous s. Based
on this idea, the feasibility constraint to be added into MP
(15) can be written as

(21)
where denotes the set of iterations where all dual SPs
are bounded. In other words, if all the dual SPs in the th
iteration are bounded, should be added into set , i.e.,

. Meanwhile, since the dual SP is bounded, strong
duality between dual SP and primal SP holds, i.e.,

Then, recall (20) and , (21) can be elaborated
as

(22)

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 04:31:55 UTC from IEEE Xplore.  Restrictions apply. 



2036 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO. 4, JULY 2015

3) Any dual SP (20) is unbounded. Thus, the corresponding
primal SP (18) is infeasible for . Therefore, the algo-
rithm needs to avoid finding these infeasible integers again
by introducing a new constraint

(23)

where denotes the set of iterations where any dual SP
is unbounded and denotes the set of corresponding
batteries in the th iteration. Similarly, if any dual SP in the
th iteration is unbounded, should be added into set ,

i.e., . The derivation of (23) is in the Appendix.
These two types of constraints are added to MP (15) dynami-

cally, according to the solution of dual SPs (20) in each iteration.
SolvingMP produces a new and if ,
where is a small positive number, the solution can be regarded
as converged and the iterative process is terminated; otherwise,
we shall repeat step 2. The Benders decomposition algorithm is
summarized as Algorithm 2.

Fig. 2. Flowchart of the proposed approach.

Fig. 3. Framework of distributed implementation.

B. Distributed Implementation
Fig. 2 shows the flowchart of the proposed approach. Clearly,

the load scheduling problem can be implemented in a dis-
tributed manner. That is, primal problem (9) is decomposed
into two sets of subproblems. The first type of subproblem

(10) is the scheduling on each appliance, which can be
computed by the LC of each appliance. On the other hand, the
second type of subproblem (11) is the scheduling on the
battery set, which can be solved by battery controller also in
a distributed way. After LCs and battery controller solve sub-
problems (10) and (11), the information will be gathered
by smart meter; then, the central controller located at smart
meter will update Lagrangian multipliers according to (13), and
send the new multipliers back to LCs and battery controller.
The multipliers serve as coordination signals that facilitate
the global optimality from local optimality. Fig. 3 shows the
framework of distributed implementation.

V. SIMULATIONS AND RESULTS
In this section, extensive simulations have been conducted

to demonstrate the efficiency of the proposed approach. Sim-
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Fig. 4. Electricity price and load of non-shiftable appliances.

TABLE I
PARAMETER SETUP FOR APPLIANCES

TABLE II
PARAMETER SETUP FOR BATTERY

ulations are implemented in MATLAB. The dissatisfaction is
modeled as a quadratic function [14]:

where is a weight. Particularly, MP (15) and dual SP
(20) are solved by Yalmip tool [20] and “linprog” function re-
spectively. The maximum number of iteration is 300. We con-
sider a scenario with 5 shiftable appliances and 1 battery, whose
parameters are listed in Tables I and II [15]. The real-time prices
are taken from [21] on May 1, 2013, as shown in Fig. 4(a). The
load of non-shiftable appliances is shown in Fig. 4(b).
Fig. 5 shows the optimal scheduling on shiftable appliances

with consideration of the user's satisfaction. Fig. 6 illustrates the
scheduling on battery. Fig. 6(a) shows that the battery is charged
in the morning when the electricity price is low. In Fig. 6(b), the
battery is discharged at the peak-demand period. Fig. 6(c) shows
that the stored energy in the battery changes according to charge/
discharge processes. After optimal scheduling on the battery, the
user saves 13.62 cents.
In order to validate the efficiency of our propose approach on

a larger test system, we additionally consider a scenario with 60

Fig. 5. Optimal scheduling on shiftable appliances.

Fig. 6. Optimal battery scheduling.

Fig. 7. Optimal scheduling on 60 shiftable appliances and 12 batteries.

shiftable appliances and 12 batteries. The corresponding sched-
uling result is shown in Fig. 7. Fig. 7(a) illustrates the total
power of the 60 scheduled shiftable appliances while the total
remaining energy in the 12 batteries is shown in Fig. 7(b). To
demonstrate the advantage of joint scheduling on appliances
and batteries, the power purchased from the grid is shown in
Fig. 7(c). The user reduces expenses by load shifting as well as
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Fig. 8. Battery number impacts on system performance.

Fig. 9. Convergence of Benders decomposition.

Fig. 10. Convergence of dual decomposition.

charging the batteries during low price periods for power supply
during high price periods.
The advantage for adding batteries into load scheduling is

obviously shown in Fig. 8. In this simulation, the number of
shiftable appliances is fixed at 100, while the number of bat-
teries increases from 0 to 15. The max power the grid can supply
is 120 KW. It is clear that the user's cost decreases with the in-
crease of batteries, because more batteries bring more flexibility
of scheduling.
Fig. 9 shows the convergence of Benders decomposition

algorithm. With feasibility and infeasibility constraints adding
into MP (15), the upper bound and lower bound quickly con-
verge to the optimal value. Fig. 10 explains how the proposed
approach converges to the optimal solution. In Fig. 10(a), the
feasible values of primal problem (9) and dual problem
(12) are plotted. The dual value is always below the primal
value due to weak duality; however, the gap is very small.
Fig. 10(b) shows the convergence of Lagrangian multipliers.

Fig. 11. Scalability of the proposed approach.

Fig. 12. Comparison of time on DA and CA.

Fig. 11 illustrates the scalability of our proposed approach.
In the simulation, the number of batteries increases from 1
to 12, and the number of appliances is kept five times of the
battery number. It's obvious that both the iteration number and
simulation time keep almost unchanged due to the advantage of
parallel computation. For purpose of comparison, Fig. 12 shows
the advantage of the proposed distributed approach (DA) over
the centralized approach (CA) which is realized by Yalmip
tool [20], for large-scale joint scheduling in terms of com-
puting time. In Fig. 12, the computing time of DA and CA
with different numbers of batteries is given. It is obviously
observed that the computational complexity of CA increases
exponentially with the battery number, while DA shows great
scalability. In conclusion, the proposed distributed approach is
more suitable for large-scale scheduling problem.

VI. CONCLUSION

In this paper, we propose an approach to improve energyman-
agement through efficient joint scheduling on large-scale appli-
ances and batteries. The joint scheduling problem is originally
formulated as MINP, which is decoupled via LR into two sets
of subproblems: single appliance scheduling and battery sched-
uling. As single appliance scheduling can be readily solved by
common convex optimization methods, the technical challenge
of this paper mainly lies on battery scheduling due to the MILP
nature, which is then successfully tackled by the proposed Ben-
ders decomposition. Meanwhile, due to the distributed nature of
the proposed approach, it is particularly suitable for large-scale
systems. Extensive simulations are conducted to verify the per-
formance of the proposed approach.
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APPENDIX A
PROOF OF (23)

For simplicity and generality, we drop the iteration index
here. If dual SP (20) is unbounded, the domain of primal SP
(18) is empty with the “given” integer . That is, the original
constraints of (18) conflict for . Thus, we can check the feasi-
bility of (18) by introducing extra variables , to
relax these constraints and formulate the following feasibility
check problem (FCP). Note that the feasibility is determined by
the constraints, while the objective function is irrelevant in this
procedure. Therefore, the objective functions of (18) and FCP
are different:

(24)

Clearly, adding a nonnegative variable to the right-hand-side of
each constraint indeed relaxes the original constraint. If any of
the original constraints is infeasible, we have be-
cause the corresponding relaxation is effective. Thus, to exclude
infeasibility we must have

(25)

The dual form of FCP is

(26)

Due to strong duality, we have

(27)

Finally, taking (27) into (25) gives (23).
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