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Abstract—This work studies the conditions that underlie the
asymptotic and exponential convergence of saddle flow dynamics
of convex-concave functions to a saddle point. First, we propose
an observability-based certificate for asymptotic convergence of
saddle flows, directly bridging the gap between the invariant set
and the equilibrium set in a LaSalle argument. This certificate
generalizes conventional conditions for convergence, e.g., strict
convexity-concavity, and leads to a novel, seperable regularization
method that requires minimal convexity-concavity for asymptotic
convergence. Second, we show that global exponential stability
in saddle flows is a direct consequence of strong convexity-
strong concavity, which provides a lower-bound estimate of
the convergence rate. This insight explains the convergence
behavior of proximal gradient algorithms for strongly convex-
concave objective functions. Our results generalize to saddle
flow dynamics with projections on the vector field and have
immediate applications in constrained convex optimization as
primal-dual dynamics. In particular, our regularized algorithms
can be used to solve linear programs distributedly. Besides,
the insight behind strong convexity-strong concavity is further
exploited to design a novel alternative conditioned algorithm for
inequality-constrained convex problems. Our theoretical results
are verified by a network flow problem and a Lasso Regression
problem.

Index Terms—Saddle flow dynamics, saddle point, asymptotic
convergence, exponential convergence, regularization

I. INTRODUCTION

Studying optimization algorithms from a dynamical systems
view point has become one of the frontier research topics,
providing means to understand their stability [2], [3], rate of
convergence [4]–[6], and robustness [6]–[9]. For example, in
the basic case of gradient descent dynamics for unconstrained
convex optimization, the objective function monotonically
decreases along trajectories towards the optimum, naturally
rendering a Lyapunov function [10]. Such realization, later
on, leads to multiple extensions, including finite-time conver-
gence [11], [12], acceleration [5], [6], and time-varying opti-
mization [13]–[15], and in many cases it can be used to help
understand the convergence of the discrete-time counterpart
[16].

One prominent area within this field is the study of saddle
flow dynamics, i.e., dynamics in the gradient descent direction
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on a sub-set of variables and the gradient ascent direction on
the complement. Designed for locating min-max saddle points,
saddle flow dynamics are particularly suited for solving con-
strained optimization problems via primal-dual methods [17],
and finding Nash equilibria of zero-sum games [18], which
lead to a broad application spectrum, including power sys-
tems [19], [20], communication networks [21], [22], and cloud
computing [23].

A major branch of studies is the asymptotic behavior of
saddle flows, with the purpose to identify and potentially
relax convergence conditions. The seminal work [24] initially
explores the asymptotic convergence within primal-dual algo-
rithms. Since then, advanced analytical tools are used to re-
validated conventional conditions for asymptotic convergence.
For instance, [17] revisits the strict convexity-concavity condi-
tion in the case of discontinuous vector fields, using LaSalle’s
invariance principle for discontinuous Caratheodory systems.
Furthermore, recent studies have demonstrated that asymptotic
convergence can be achieved under weaker conditions. One
line of conditions focuses on conditions related to convex-
ity, such as local strong convexity-concavity [9], convexity-
linearity, or strong quasiconvexity-quasiconcavity [25]. Reg-
ularization methods serve as alternative ways to circumvent
the above conditions, effectively handling the Lagrangian of
constrained convex/linear optimization through various penalty
terms on equality constraints or even projected inequality
constraints [8], [26], as well as the proximal method [23], [27].
Despite the merit of regularization that relaxes conditions for
convergence, the extra penalty terms commonly introduce cou-
plings that may require additional computation and communi-
cation overheads when realizing distributed implementation.

Recently, the focus has started to shift toward exponential
stability, which is a desirable property of dynamical systems
both theoretically and in practice. A series of algorithms
have explored the exponential convergence through different
techniques, such as the augmented Lagrangian [28], [29],
proximal operators [30]–[32], and so on. Special projections
are designed as the augmentation of the Lagrangian to avoid
discontinuity in recent research [33], [34]. Later on, [28]
proposed the projection-free dynamics for linear inequality-
constrained cases. A continuing work [29] considers convex
inequality constraints with the semi-global exponential conver-
gence depending on the initial point. Another kind of penalty
component in the augmented Lagrangian relies on proximal
operators. For instance, the framework of integral quadratic
constraints has been applied to validate the exponential sta-
bility of the proximal gradient flow, as presented in [30]–
[32]. However, the current analysis of convergence rates
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mainly centered on primal-dual dynamics of the Lagrangian
and remains largely case-specific, highly dependent on the
techniques applied. Furthermore, the convergence behavior for
general saddle flow dynamics seems not fully understood.

Another subject of analysis concerns how to figure out the
less conservative estimation of the convergence rate. Most
existing results seem to depend on several parameters. For
equality-constrained problems, [35], [36] establish the strict
contraction under specific metrics with convergence rates that
are related to properties like singular values of the constraint
matrix. [37] uses a two-timescale approach which leads to two
different convergence regimes depending on the scale ratio.
For the extension to linear inequality-constrained problems,
a Riemannian geometric framework is proposed in [38] to
prove the global exponential stability associated with adjusting
parameters by showing the strong monotonicity of gradients
endowed with a Riemannian metric. By utilizing the coordi-
nate transformation, our paper enjoys a better lower bound on
the convergence rate of the projected primal-dual dynamics
for optimization problems with inequality constraints.

In this paper, we propose a systematic methodology for
estimating the convergence rate, based purely on the properties
of saddle functions. First, we provide a sufficient certificate
for the asymptotic convergence of saddle flow dynamics
for convex-concave functions. The certificate with observable
properties directly connects the invariant set and the equilib-
rium set through LaSalle’s invariance principle, inspiring a
novel separable dissipative method that only requires mini-
mal convexity-concavity to establish convergence. Second, we
establish the strong convexity-strong concavity condition of
objective functions for exponential convergence. Furthermore,
it provides a new explanation for the proximal method, show-
ing how proximal operators enhance the concavity. Finally,
our results can be generalized to projected saddle flow dy-
namics on the vector field, and yield novel regularized and
conditioned algorithms that have immediate applications in
inequality-constrained convex optimization. Compared to most
existing ones, our findings exhibit generality in the context
of saddle functions, rather than for primal-dual dynamics,
directly connecting the properties of the saddle functions to
their convergence properties.

Contributions: In particular, our contributions are summa-
rized as follows:

(i) We propose a sufficient observable certificate for asymp-
totic convergence of saddle flow dynamics of a convex-
concave function, which is weaker than existing con-
ditions, e.g., strict convexity-concavity and proximal
regularization.

(ii) Furthermore, minimal convexity-concavity conditions of
asymptotical convergence are derived through a novel
separable dissipative method in a distributed manner.

(iii) We similarly establish a strong convex-strong concave
condition, which directly implies the exponential con-
vergence of saddle flow dynamics. Notice that, the con-
vergence purely depends on the structure of the saddle
function

(iv) The insight behind the strong convex-concave condition
provides a new perspective to explain existing algorithms

and inspire new algorithms, such as proximal gradient
algorithms for nonsmooth functions and the change of
variable for bilinear functions.

(v) Two sufficient conditions can be generalized to accom-
modate projections on the vector field to solve inequality-
constrained optimization problems.

Organization: The remainder of the paper is organized
as follows. Section II introduces the problem formulation
with basic definitions and assumptions, followed by the key
results on asymptotic convergence of saddle flow dynamics in
Section III. The exponential convergence analysis of saddle
flow dynamics is demonstrated in Section IV. We further
generalize the results to the projected cases in Section V. There
are various applications for constrained convex optimization
problems in Section VI. Section VII provides simulation
validations and Section VIII concludes.

Notation: Let R and R≥0 be the sets of real and non-
negative real numbers, respectively. In ∈ Rn×n denotes the
identity matrix of size n. Given two vectors x, y ∈ Rn, xi
and yi denote their ith entries, respectively; and x ≤ y holds
if xi ≤ yi holds for ∀i. Given a continuously differentiable
function S(x, y) ∈ C1 with S : Rn × Rm → R, we
use ∂

∂xS(x, y) ∈ R1×n and ∂
∂yS(x, y) ∈ R1×m to denote the

partial derivatives with respect to x and y, respectively. We
further define ∇xS(x, y) =

[
∂
∂xS(x, y)

]T
while ∂2

∂x∂yS(x, y)
represents taking the partial derivative of S(x, y) with respect
to y first, then with respect to x. Particularly, we further de-

fine ∂2

∂x∂yS(x, y) =
[
∂
∂y∇xS(x, y)

]T
. Besides, µ(A) denotes

the matrix measure of A corresponding to the norm we use. In
particular, for the 2-norm, one has µ2(A) = λmax(A+AT )/2
where λmax is the maximal eigenvalue.

II. PROBLEM FORMULATION

We consider a function S(x, y) with S : D → R
where D = X × Y and both X ⊆ Rn and Y ⊆ Rm are
convex sets. Our goal is to study different dynamic laws that
seek to converge to some saddle point (x?, y?) of S(x, y).
While in general, such questions could be asked in a setting
without any further restrictions, neither the existence of saddle
points nor convergence towards them is easy to guarantee.
For the purpose of this paper, we focus our attention on
functions S(x, y) that are convex-concave.

Definition 1 (Convex-Concave Functions). A function S(x, y)
is convex-concave if and only if S(·, y) is convex for ∀y ∈ Y
and S(x, ·) is concave for ∀x ∈ X . A function S(x, y)
is strictly convex-concave if and only if S(x, y) is convex-
concave and either S(·, y) is strictly convex for ∀y ∈ Y
or S(x, ·) is strictly concave for ∀x ∈ X .

We further derive a general definition of the saddle point of
a convex-concave function S(x, y) as follows:

Definition 2 (Saddle Point). A point (x?, y?) ∈ D is a saddle
point of a convex-concave function S(x, y) if

S(x?, y) ≤ S(x?, y?) ≤ S(x, y?) (1)

holds for ∀x ∈ X and ∀y ∈ Y .
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Due to the convexity-concavity of S(x, y), we are specif-
ically interested in minimizing S(x, y) over x and mean-
while maximizing S(x, y) over y. Throughout this work,
we will assume that S(x, y) is continuously differentiable,
i.e., S(x, y) ∈ C1, as formally summarized below.

Assumption 1. S(x, y) is convex-concave, continuously dif-
ferentiable.

The continuous differentiability in Assumption 1 is intro-
duced to simplify the exposition. It does not significantly limit
the scope of the results as one can always derive a continu-
ously differentiable surrogate of a continuous convex/concave
function by means of the Moreau Envelope [39].

Given a convex-concave function S(x, y) satisfying As-
sumption 1, we refer to the following dynamic law

ẋ = −∇xS(x, y) , (2a)
ẏ = +∇yS(x, y) , (2b)

as the saddle flow dynamics of S(x, y). Next, we suppose that
such a point (x?, y?) does exist in the feasible set.

Assumption 2. S(x, y) is convex-concave, continuously dif-
ferentiable, and there exists at least an equilibrium point of (2)
in the domain D.

Under Assumption 2, we further define stationary points.

Definition 3 (Stationary Point). A point (x?, y?) ∈ X × Y is
a stationary point of a function S(x, y) if{

∇xS(x?, y?) = 0

∇yS(x?, y?) = 0
(3)

holds.

Remark 1. If stationary points exist, any stationary point must
be a saddle point defined by (2).

∇xS(x?, y?) = 0⇒ S(x?, y?) ≤ S(x, y?), ∀x ∈ X
∇yS(x?, y?) = 0⇒ S(x?, y) ≤ S(x?, y?),∀y ∈ Y

However, the converse is not true without Assumption 2.

Due to convexity-concavity, the dynamic law drives the
system towards such stationary points in gradient descent and
ascent directions, respectively, for x and y. We will mainly
work with this standard form of saddle flow dynamics to
locate a saddle point of S(x, y). In the following Section III
and Section IV, we first consider the case that the feasible
domain is full space, i.e., D = Rn × Rm. Then we move to
the extension of projected version over the feasible set.

III. ASYMPTOTIC CONVERGENCE

This section presents an observable certificate that ensures
asymptotic convergence of the saddle flow dynamics (2)
towards a saddle point of S(x, y). We show that two conven-
tional conditions of strict convexity-concavity and proximal
regularization satisfy this certificate as special cases. We fur-
ther build on this certificate to develop a separable dissipative
method that entails minimal convexity-concavity requirements
on S(x, y) for saddle flow dynamics to converge to a saddle
point asymptotically.

A. Observable Certificates

We now describe the proposed observable certificate for
the saddle flow dynamics (2) to asymptotically converge to
a saddle point of S(x, y).

Definition 4 (Observable Certificate). A function h(x, y)
with h : Rn × Rm → R2

≥0 is an observable certificate
of S(x, y), if and only if there exists a saddle point (x?, y?)
such that [

S(x?, y?)− S(x?, y)

S(x, y?)− S(x?, y?)

]
≥ h(x, y) ≥ 0 (4)

holds and for any trajectory (x(t), y(t)) of (2) that satis-
fies h(x(t), y(t)) ≡ 0, we have ẋ, ẏ ≡ 0.

Remark 2. We call h(x, y) an observable certificate, due
to the second property of Definition 4, which is akin to (2)
having h(x, y) as an observable output. It is exactly this
observability property that will allow us to connect invariant
sets with saddle-points.

Assumption 3. S(x, y) has an observable certificate h(x, y)
as given by Definition 4.

Checking whether Assumption 3 holds basically re-
quires hunting for a qualified observable certificate h(x, y)
of S(x, y). Under this assumption, asymptotic convergence of
the saddle flow dynamics (2) is formally stated below.

Theorem 1 (Sufficiency of Observable Certificates). Let
Assumptions 1 and 3 hold. Then the saddle flow dynam-
ics (2) asymptotically converge to some saddle point (x?, y?)
of S(x, y).

Proof. The proof follows from applying LaSalle’s invariance
principle [10] to the following candidate Lyapunov function

V (x, y) =
1

2
‖x− x?‖2 +

1

2
‖y − y?‖2 , (5)

where (x?, y?) is the saddle point identified in Definition 4.
Taking the Lie derivative of (5) along the trajectory (x(t), y(t))
of (2) gives

V̇ = (x− x?)T ẋ+ (y − y?)T ẏ
= (x− x?)T [−∇xS(x, y)] + (y − y?)T [+∇yS(x, y)]

= (x? − x)T∇xS(x, y)− (y? − y)T∇yS(x, y)

≤ S(x?, y)− S(x, y)− (S(x, y?)− S(x, y))

= S(x?, y)− S(x, y?)

= S(x?, y)− S(x?, y?)︸ ︷︷ ︸
≤0

+S(x?, y?)− S(x, y?)︸ ︷︷ ︸
≤0

,

where the second equality plugs in (2), the first inequality ap-
plies the convexity-concavity of S(x, y), and the last inequality
follows from the saddle property (1) of (x?, y?).

Since (5) is radially unbounded, every sub-level set of it is
compact. From above, it follows that the trajectories of (2) are
bounded and contained in an invariant domain

D0(x0, y0) := {(x, y) | V (x, y) ≤ V (x0, y0)} , (6)
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where (x0, y0) is any given initial point. LaSalle’s invariance
principle then implies that any trajectory of (2) should con-
verge to the largest invariant set

S := D0 ∩
{

(x, y) | V̇ (x(t), y(t)) ≡ 0
}
. (7)

Given Assumption 3, (4) implies that S is indeed a subset of

H = {(x, y) | h(x(t), y(t)) ≡ 0} , (8)

which is further a subset of the equilibrium set of (2), denoted
as

E := {(x, y) | ẋ(t), ẏ(t) ≡ 0} , (9)

i.e., S ⊂ H ⊂ E.
It follows that the invariant set S contains only equilibrium

points. If S were to be composed of isolated points – only
possible when there is a unique saddle point – this would
be sufficient to prove convergence to the (unique) saddle
point. However, in general LaSalle’s invariance principle only
shows asymptotic convergence to the invariant set, without
guaranteeing convergence to a point within it, even in the case
where the set is composed of equilibrium points.

This issue is circumvented by the fact that all the equilibria
within S are stable. See, e.g., [40, Corollary 5.2]. Alternatively,
notice that S is compact, and as a result any trajectory within
the Ω limit set of (2) has a convergent sub-sequence. Let (x̄, ȳ)
be the limit point of such a sequence. Due to (x̄, ȳ) ∈ S,
it is also a saddle point. By changing (x?, y?) specifically
to (x̄, ȳ) in the definition of V (x, y), it follows that 0 ≤
V (x(t), y(t))→ 0 holds, which implies (x(t), y(t))→ (x̄, ȳ).
�

The existence and characterization of such observable cer-
tificates h(x, y) may still be vague from only Definition 4.
We next discuss how they can be identified through concrete
examples. We show that the observable certificate is indeed
a weaker condition underneath some of the conventional
ones required for asymptotic convergence of the saddle flow
dynamics (2).

1) Strict Convexity-Concavity: The most common condi-
tion is arguably the strict convexity-concavity of S(x, y) [17].
We formalize its connection with our observable certificate as
below.

Assumption 4. S(x, y) is strictly convex-concave.

Proposition 2 (Strict Convexity-Concavity). Let Assump-
tions 1 and 4 hold. Then the function

h(x, y) :=

[
S(x?, y?)− S(x?, y)

S(x, y?)− S(x?, y?)

]
, (10)

with (x?, y?) being an arbitrary saddle point of S(x, y), is an
observable certificate of S(x, y).

Asymptotic convergence of the saddle flow dynamics (2)
then immediately follows from Theorem 1.

Corollary 3. Let Assumptions 1 and 4 hold. Then the saddle
flow dynamics (2) asymptotically converge to some saddle
point (x?, y?) of S(x, y).

2) Proximal Regularization: In the particular form of sad-
dle flow dynamics known as primal-dual dynamics [17], a
proximal regularization method is proposed in [23], [27] to
guarantee asymptotic convergence of the regularized saddle
flow dynamics, even in the absence of strict convexity-
concavity. Specifically, a surrogate differentiable convex-
concave function

S̄(z, y) := min
x

{
S(x, y) +

1

2
‖x− z‖2

}
is defined from S(x, y) that maintains the same saddle
points [27]. Then the following regularized saddle flow dy-
namics

ż = −∇zS̄(z, y) , (11a)
ẏ = +∇yS̄(z, y) , (11b)

suffice to locate a saddle point. We formalize the connection
of this method with our observable certificate as follows.

Proposition 4 (Proximal Regularization). Let S(x, y) be a
Lagrangian function for some constrained convex program and
Assumption 1 hold. Then the function

h(z, y) :=

[
S̄(z?, y?)− S̄(z?, y)

1
2‖x̄(z, y?)− z‖2

]
, (12)

with x̄(z, y?) := arg minx
{
S(x, y?) + 1

2‖x− z‖2
}

and (z?, y?) being an arbitrary saddle point of S̄(z, y),
is an observable certificate of S̄(z, y).

Details of the proof are omitted here and readers are referred
to [27] for more insights. We remark that the identifica-
tion of this observable certificate (12) does not significantly
alleviate the analysis overheads since the complementary
equilibrium properties of proximal regularization on the La-
grangian S(x, y) are still crucial to validating the observable
certificate (12) and establishing convergence.

Anyhow, the existence of an observable certificate satisfies
Assumption 3 for S̄(z, y) and thus asymptotic convergence
of the saddle flow dynamics (11) follows immediately from
Theorem 1.

Corollary 5. Let S(x, y) be a Lagrangian function for some
constrained convex program and Assumption 1 hold. Then the
regularized saddle flow dynamics (11) asymptotically converge
to some saddle point (z?, y?) of S̄(z, y), with (x? = z?, y?)
being a saddle point of S(x, y).

In fact, even the differentiability in Assumption 1 is not
required since the surrogate S̄(z, y) can be continuously
differentiable regardless.

B. Dissipative Saddle Flow Dynamics

We further design a novel separable regularization method
that exploits our observable certificate and only requires As-
sumption 1 for a regularized version of saddle flow dynamics
to asymptotically converge to a saddle point. The key of this
method is to augment the domain of S(x, y) and introduce
regularization terms without altering the positions of the
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original saddle points. In particular, we propose a regularized
surrogate for S(x, y) via the following augmentation

S(x, z, y, w) :=
ρ

2
‖x− z‖2 + S(x, y)− ρ

2
‖y − w‖2, (13)

where z ∈ Rn and w ∈ Rm serve as two new sets of virtual
variables and ρ > 0 is a constant regularization coefficient.
It is straightforward to verify the fixed positions of saddle
points between S(x, y) and S(x, z, y, w) with virtual variables
aligned with original variables.

Lemma 6 (Saddle Point Invariance). Let Assumption 1 hold.
Then a point (x?, y?) is a saddle point of S(x, y) if and only
if (x?, z?, y?, w?) is a saddle point of S(x, z, y, w), with

x? = z? and y? = w? . (14)

Proof. Recall the saddle property (1) of a saddle point, this
theorem follows immediately from

S(x?, z?, y, w) ≤ S(x?, x?, y?, y?) ≤ S(x, z, y?, w?)

⇐⇒ S(x?, z?, y, w) ≤ S(x?, y?) ≤ S(x, z, y?, w?)

⇐⇒ S(x?, y)− ρ
2
‖y−w‖2 ≤ S(x?, y?) ≤ S(x, y?)+ ρ

2
‖x−z‖2

⇐⇒ S(x?, y) ≤ S(x?, y?) ≤ S(x, y?) ,

where the first and second steps build upon the definition (13)
of S(x, z, y, w), and the third step uses norm non-negativity.
�

The regularized function S(x, z, y, w) is convex in (x, z),
concave in (y, w), and continuously differentiable with at least
one saddle point, by its definition in (13) and Lemma 6. There-
fore, Assumption 1 also holds for S(x, z, y, w). Lemma 6 en-
sures that whenever we locate a saddle point of S(x, z, y, w),
a saddle point of S(x, y) satisfying (1) is attained simulta-
neously. This motivates us to instead look at the saddle flow
dynamics of S(x, z, y, w).

Following (2), this regularized version of saddle flow dy-
namics are given by

ẋ = −∇xS(x, y)− ρ(x− z) , (15a)
ż = ρ(x− z) , (15b)
ẏ = +∇yS(x, y)− ρ(y − w) , (15c)
ẇ = ρ(y − w) . (15d)

Although this dynamic law has twice as many state variables
as its prototype (2), it is important to notice that, unlike the
proximal gradient algorithm [23], [27], [39] and the equality
constrained regularization [8], [26], (15) still preserves the
same distributed structure that (2) may have. As a result,
it can be implemented in a fully distributed fashion. The
distributed property plays a significant role in solving network
optimization problems with applications to power systems,
wireless systems and bargaining problems.

We are now ready to provide the key result that the
regularized saddle flow dynamics (15) asymptotically reach a
saddle point as long as the minimal convexity-concavity holds
for S(x, y).

Proposition 7 (Separable Regularization). Let Assumption 1
hold. Then the function

h(x, z, y, w) :=

[
ρ
2‖y − w‖2
ρ
2‖x− z‖2

]
(16)

is an observable certificate of S(x, z, y, w).

Proof. The above observable certificate h(x, z, y, w) satis-
fies (4) in light of the following calculation:[

S(x?, z?, y?, w?)− S(x?, z?, y, w)

S(x, z, y?, w?)− S(x?, z?, y?, w?)

]

≥


S(x?, y?)− S(x?, y)︸ ︷︷ ︸

≥0

+ρ
2‖y − w‖2

S(x, y?)− S(x?, y?)︸ ︷︷ ︸
≥0

+ρ
2‖x− z‖2


≥
[
ρ
2‖y − w‖2
ρ
2‖x− z‖2

]
≥ 0 .

The fact that h(x, z, y, w) ≡ 0 implies x(t) ≡ z(t) and y(t) ≡
w(t) enforces ż, ẇ ≡ 0 according to (15b), (15d), and
then ẋ, ẏ ≡ 0 is simultaneously guaranteed. �

Assumption 3 holds for the regularized func-
tion S(x, z, y, w) and asymptotic convergence of the
regularized saddle flow dynamics (15) follows immediately
from Theorem 1.

Corollary 8. Let Assumption 1 hold. Then the regularized
saddle flow dynamics (15) asymptotically converge to some
saddle point (x?, z?, y?, w?) of S(x, z, y, w), with (x?, y?)
being a saddle point of S(x, y).

Remark 3. Proposition 7 indicates that only the convexity-
concavity of S(x, y) is required to asymptotically arrive at
a saddle point through the regularized saddle flow dynam-
ics (15). This condition is significantly milder than most
existing ones in the literature, and is in some sense minimal,
as it includes bi-linear saddle functions as a special case.
Unlike the aforementioned proximal regularization method in
Section III-A, our separable regularization method applies to
saddle flow dynamics of general convex-concave functions.

IV. EXPONENTIAL CONVERGENCE

We now study the conditions that render the saddle flow
dynamics (2) globally exponentially stable. We first show how
exponential stability appears as a direct consequence of strong
convexity-strong concavity of the saddle function. We then
use this insight to explain the exponential convergence of the
proximal saddle flow, the extension of the proximal gradient
algorithm [32], [41].

A. Strong Convex-Concave Saddle Flow Dynamics
Before moving towards the question of exponential stability,

we rewrite the saddle flow dynamics (2) in a more compact
form

ż = F (z) (17)
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with z = (x, y) and

F (z) =

[
−∇xS(x, y)

∇yS(x, y)

]
(18)

We further introduce an assumption of absolute continuity
on F (z) as the minimal requirement for the follow-up proof.

Definition 5 (Absolute Continuity). Let I be an interval
on R. A function f : I → R is absolute continues if for
every ε > 0, there exists some δ such that whenever a
finite sequence of pairwise disjoint sub-intervals [xk, yk] of
I satisfies

∑
k |yk − xk| < δ then

∑
k |(f(yk)− f(xk)| < ε.

Assumption 5. The gradient of S(x, y), i.e., ∇S(x, y) :=
(∇xS(x, y),∇yS(x, y)), is absolutely continuous.

Remark 4. Assumption 5 is slightly weaker than Lipschitz
continuity, which is the commonly used assumption in the study
of global exponential stability [28], [31], [42].

Assumption 5 basically enable

∂

∂z
F (z) =

[
− ∂2

∂x2S(x, y) − ∂2

∂x∂yS(x, y)
∂2

∂y∂xS(x, y) ∂2

∂y2S(x, y)

]
(19)

and

1

2

(
∂

∂z
F (z)+

∂

∂z
F (z)T

)
=

[
− ∂2

∂x2S(x, y) 0

0 ∂2

∂y2S(x, y)

]
(20)

We now show strong convexity-strong concavity of the
saddle function are conducive to exponential convergence.

Assumption 6 (Strong Saddle). S(x, y) is µ-strongly convex
in x and q-strongly concave in y.

Remark 5. One consequence of the strong saddle assumption
is that there is a unique saddle point (x?, y?), and

Ŝ(x, y) := S(x, y)− µ

2
‖x− x?‖2 +

q

2
‖y − y?‖2

is convex in x, concave in y, and (x?, y?) is also its saddle
point of Ŝ.

A straightforward consequence of Assumptions 5 and 6
gives the following exponential convergence of the saddle flow
dynamics (2).

Theorem 9 (Exponential Convergence). Let Assumptions 5
and 6 hold. Then the saddle flow dynamics (2) are globally
exponentially stable. More precisely,

‖z(t)− z?‖ ≤ ‖z(0)− z?‖e−ct

holds with rate
c := min{µ, q} > 0.

Proof. The proof of Theorem 9 features a reformulation of
the Lie derivative of (5) based on the fundamental theorem of
calculus for absolute continuous functions [43].

We consider again the Lyapunov function

V (z) =
1

2
‖z − z?‖2 =

1

2
‖x− x?‖2 +

1

2
‖y − y?‖2

Now taking the Lie derivative with respect to (17) gives

V̇ (z) = (z − z?)TF (z)

=
1

2

(
(z − z?)TF (z) + F (z)T (z − z?)

)
(21)

Assumption 5 allows us to write F (z) as

F (z) =

∫ 1

0

∂

∂z
F (z(s))(z − z?)ds+ F (z?)︸ ︷︷ ︸

=0

(22)

with z(s) = (z − z?)s + z?, where we have used the
fact dz(s) = (z − z?)ds.

Now substituting (22) into (21) gives

V̇ (z) = (z − z?)T
∫ 1

0

1

2

(
∂

∂z
F (z)+

∂

∂z
F (z)T

)
ds (z − z?)

= (z − z?)T
∫ 1

0

[
− ∂2

∂x2S(z(s)) 0

0 ∂2

∂y2S(z(s))

]
ds (z − z?)

(23)

We remark that up to this point all the steps of the calculation
follow with an equal sign. That is, V̇ (z) is exactly given
by (23).

The rest of the proof follows from applying Assumption 6
to (23), i.e.,

V̇ (z) ≤ −µ‖x− x?‖2 − q‖y − y?‖2
≤ −c‖z − z?‖2 = −2cV (z)

Therefore, it follows the Comparison Lemma [10] that

V (z(t)) ≤ e−2ctV (z(0))

⇐⇒ ‖z(t)− z?‖2 ≤ e−2ct‖z(0)− z?‖2
⇐⇒ ‖z(t)− z?‖ ≤ e−ct‖z(0)− z?‖

�

Remark 6. Contraction theory provides an insight of the
exponential convergence. In terms of the induced matrix loga-
rithmic norm µ(A) = limh→0+

‖I+hA‖−1
h and (18), we show

the contractivity of saddle flow dynamics:

µ2 (Dz F (z)) = λmax

(
Dz F (z)+Dz F (z)T

2

)
= λmax

([
− ∂2

∂x2S(x, y) 0

0 ∂2

∂y2S(x, y)

])
= −min {µ, q} < 0.

(24)
F (z) is infinitesimally contracting with rate min{µ, q} which
implies the exponential convergence to the saddle point.

B. Proximal Regularization for Saddle Flow Dynamics

In this subsection, we gonna to show how proximal methods
enhance the concavity when having only one-sided strong
convexity. Before moving on, the related assumption is given
as follows.

Assumption 7. The function S(x, y) is µ-strongly convex
and l-smooth over x, i.e., lI � ∂2

∂x2S(x, y) � µI .
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Given a function S(x, y), we introduce an extra proximal
variable u ∈ Rn and impose a quadratic regularization on the
function:

Ŝ(x, u, y) = S(x, y) +
ρ

2
‖x− u‖2 (25)

where ρ > 0 is a constant. Notably, (x?, y?) is a saddle point
if and only if (x?, u? = x?, y?) is an optimal solution to (25).
Instead of directly applying the standard saddle flow dynamics
to Ŝ(x, u, y), we reduce the modified saddle function by
minimizing it over the variable x and attain a proximal saddle
function

S̃(u, y) := min
x
Ŝ(x, u, y). (26)

Due to the strong convexity of Ŝ(x, u, y) in x, (26) can be
elaborated as

S̃(u, y) = S(x?(u, y), y) +
ρ

2
‖x? − u‖2, (27)

where x?(u, y) is the unique minimizer given (u, y) such that

∇xS(x?(u, y), y) + ρ(x?(u, y)− u) = 0 (28)

holds.
Although little attention has been paid to the proximal

saddle flow dynamics, the proximal method is by far a
commonly used method for primal-dual dynamics, especially
handling composite optimization problems. In [30], the au-
thor has derived the proximal augmented Lagrangian that
leads to exponentially convergent primal-dual dynamics. [31]
has extended [30] to a discretized version by the explicit
forward Euler discretization which remains the exponential
convergence. For a set of problems satisfying a structural
property, [44] has established the exponential convergence
of primal-dual dynamics based on the proximal augmented
Lagrangian.

Lemma 10. S̃(u, y) is convex in u, concave in y and contin-
uously differentiable on Rn × Rm with gradients:

∇uS̃(u, y) = ρu− ρx?(u, y) (29a)

∇yS̃(u, y) = ∇yS(x?(u, y), y) (29b)

Refer to [27][Theorem 2] for the proof of Lemma 10.

Theorem 11 (Saddle point characterization of S(z, y)). A
point (x?, y?) is a saddle point of L(x, y) if and only if (u?, y?)
is a saddle point of S(u, y) with u? = x?.

Theorem 11 follows immediately from Lemma 10 as well
as

∇uS̃(u?, y?) = 0 ⇐⇒ ∇xS(x?, y?) = 0,

∇yS̃(u?, y?) = 0 ⇐⇒ ∇yS(x?, y?) = 0,

where x?(u?, y?) = x? and (28) have been applied. It basically
allows us to focus on the proximal saddle flow dynamics
of S(u, y), i.e.,

u̇ = −∇uS̃(u, y) = −(ρu− ρx?(u, y)), (30a)

ẏ = +∇yS̃(u, y) = ∇yS(x?(u, y), y), (30b)

and we next propose a sufficient condition that guarantees its
exponential convergence to a saddle point.

Assumption 8. The Jacobian matrix ∂2

∂y∂xS(x?, y) is full row

rank with σI �
[

∂2

∂y∂xS(x?, y)
] [

∂2

∂x∂yS(x?, y)
]
� κI , and

locally Lipschitz row-wise.

Theorem 12. Let Assumptions 1, 7 and 8 hold. Given
any ρ > 0, the proximal saddle flow dynamics (30) are globally
exponentially stable. More precisely, given z := (u, y),

‖z(t)− z?‖ ≤ ‖z(0)− z?‖e−ct

holds with rate

c := min

{
µρ

µ+ ρ
,

κ

l + ρ

}
> 0.

Verify assumptions.

Proof. We derive the second-order partial derivatives
from (30) as

∂2

∂u2
S̃(u, y) = ρI − ρJux?

(31a)

∂2

∂y2
S̃(u, y) =

[
∂2

∂x∂y
S(x?, y)

]T
Jyx?

+
∂2

∂y2
S(x?, y)

(31b)
where Jux?

and Jyx?
are Jacobin matrices of x? with respect

to u and y. It follows from (28) and Assumption 8 that

∂2

∂x2
S(x?, y)Jux?

+ ρJux?
− ρI = 0 (32a)

∂2

∂x2
S(x?, y)Jyx?

+

[
∂2

∂y∂x
S(x?, y)

]T
+ ρJyx?

= 0. (32b)

According to (32), we can easily derive that

Jux?
= ρ

(
∂2

∂x2
S(x?, y) + ρI

)−1
(33a)

Jyx?
= −

(
∂2

∂x2
S(x?, y) + ρI

)−1 [
∂2

∂y∂x
S(x?, y)

]T
.

(33b)

Combining (31) and (33), the second-order partial derivatives
can be illustrated as below:

∂2

∂u2
S̃(u, y) = ρ[I − ρ(

∂2

∂x2
S(x?, y) + ρI)−1] (34a)

∂2

∂y2
S̃(u, y) =

∂2

∂y2
S(x?, y)−

[
∂2

∂x∂y
S(x?, y)

]T
· ( ∂

2

∂x2
S(x?, y) + ρI)−1

[
∂2

∂y∂x
S(x?, y)

]T
(34b)

Since S(x, y) is convex-concave, we have ∂2

∂y2 S̃(x?, y) � 0.
Then, Assumption 8 further implies Assumption 6 by

∂2

∂u2
S̃ = ρI−ρ(

∂2

∂x2
S(x?, y)+ρI)−1 � µρ

µ+ ρ
I � 0, (35a)
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∂2

∂y2
S̃ =

∂2

∂y2
S −

[
∂2

∂x∂y
S(x?, y)

]T
· ( ∂

2

∂x2
S(x?, y) + ρI)−1

[
∂2

∂y∂x
S(x?, y)

]T
� −

[
∂2

∂x∂y
S(x?, y)

]T
(
∂2

∂x2
S(x?, y) + ρI)−1

·
[
∂2

∂y∂x
S(x?, y)

]T
� − 1

l + ρ

[
∂2

∂x∂y
S(x?, y)

]T [
∂2

∂y∂x
S(x?, y)

]T
� − κ

l + ρ
I ≺ 0,

(35b)
given ρ > 0. Therefore, Theorem 12 follows immediately from
Theorem 9. �

Remark 7. The second term in (34b), an estimation of the
interaction level between x and y, is positive definite. There-
fore, we can adjust the concavity over y by choosing proper
interaction. If the interaction term dominates the original
property, then the concavity can be maintained and even
enhanced by the dominating interaction term.

Remark 8. In terms of the convergence rate, there is a trade-
off between the convexity and the concavity. The proximal
method sacrifices some convexity over primal variables to
attain strong concavity over dual variables.

Corollary 13. The fastest convergence rate can be attained
at

c? =
2µκ√

(µl − κ)2 + 4µ2κ+ µl + κ
< µ (36)

by optimizing ρ to be ρ? > 0 that satisfies
µρ?
µ+ ρ∗

=
κ

l + ρ∗
, (37a)

The uniqueness of ρ? > 0 is an immediate result of the
observation that for ρ > 0, the former bound starts from 0
and keeps increasing to approach m while the latter bound
starts from a finite positive value and diminishes to 0, as ρ
grows to infinity.

V. PROJECTED SADDLE FLOW DYNAMICS

In this section we generalize the results in Section III to
account for projections on the vector field of the saddle flow
dynamics (2) that are commonly introduced in the case of
solving inequality constrained optimization problems.

Specifically, we look at a projected version of saddle flow
dynamics of a convex-concave function S(x, y) as below:

ż = ΠD [z, F (z)] =

[
ΠX [x,−∇xS(x, y)]

ΠY [y,+∇yS(x, y)]

]
. (38a)

Given x ∈ X ⊆ Rn and v ∈ Rn, the vector projec-
tion ΠX [x, v] of v at x with respect to X is defined as

ΠX [x, v] = lim
δ→0+

ΨX [x+ δv]

δ
, (39)

where ΨX [y] = arg minz∈X ‖z − y‖ denotes the point-wise
projection in X to y. With this projection, (x(t), y(t)) is
constrained to be in the feasible set D as long as it starts
with a feasible initial point. Accordingly, we slightly modify
Assumption 1 to guarantee the existence of such saddle points.

Assumption 9. S(x, y) is convex-concave, continuously dif-
ferentiable, and there exists at least one saddle point (x?, y? ≥
0) satisfying (1).

In this context, saddle points are restrained to ones in the
feasible set of (x, y). Therefore, any observable certificate
of S(x, y) will be defined on a saddle point (x?, y?) ∈ D
in Definition 4. Next, we formally generalize the sufficiency
of observable certificates developed in Section III-A.

A. Observable Certificates for Projected Flows

The generalization of Theorem 1 for asymptotic conver-
gence of the projected saddle flow dynamics (41) to a saddle
point of S(x, y) is summarized as follows.

Theorem 14 (Sufficiency of Observable Certificates for Pro-
jected Flows). Let Assumptions 3 and 9 hold. Then the
projected saddle flow dynamics (38) asymptotically converge
to some saddle point (x?, y?) ∈ D of S(x, y).

The proof requires a lemma regarding the projec-
tion ΠX [x, v].

Lemma 15 (Lemma 7 [45]). Given any closed convex set K ⊂
Rn and a, b ∈ K, v ∈ Rn, the inner product

〈b− a, v −ΠK[a, v]〉 ≤ 0

holds.

Using this lemma, the proof of Theorem 14 essentially
follows from that of Theorem 1 as follows.

Proof. Consider the same quadratic Lyapunov function (5).
Taking its Lie derivative along the trajectory (x(t), y(t))
of (41) yields

V̇ = (x− x?)T ẋ+ (y − y?)T ẏ
= (x− x?)TΠX [x,−∇xS(x, y)]

+ (y − y?)TΠY [y,+∇yS(x, y)]

= (x? − x)T∇xS(x, y)− (y? − y)T∇yS(x, y)

+ (x? − x)T (−∇xS(x, y)−ΠX [x,−∇xS(x, y)])︸ ︷︷ ︸
≤0

+ (y? − y)T (∇yS(x, y)−ΠY [y,∇yS(x, y)])︸ ︷︷ ︸
≤0

≤ S(x?, y)− S(x, y)− (S(x, y?)− S(x, y))

= S(x?, y)− S(x, y?)

= S(x?, y)− S(x?, y?)︸ ︷︷ ︸
≤0

+S(x?, y?)− S(x, y?)︸ ︷︷ ︸
≤0

,

where the key step is to use Lemma 15 in the first inequality.
The rest of the proof remains almost the same except that the
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largest invariant set is defined between the on-off switches of
the projection. From above, V̇ (x, y) ≡ 0 additionally implies

x(t) ≡ x? or ΠX [x,−∇xS(x, y)] ≡ −∇xS(x, y),

and

y(t) ≡ y? or ΠY [y,+∇yS(x, y)] ≡ +∇yS(x, y),

and an invariance principle for Caratheodory systems [46] can
be applied to account for the discontinuities in the vector field
due to the projection. �

B. Exponential Convergence

We next further show how Theorem 9 generalizes to account
for the exponential convergence of (38).

Theorem 16. Let Assumptions 5, 6 and 9 hold. Then the
projected saddle flow dynamics (38) are globally exponentially
stable. More precisely, given z := (x, y),

‖z(t)− z?‖ ≤ ‖z(0)− z?‖e−ct

holds with rate
c := min{µ, q} > 0.

Proof. Lemma 15 allows the proof of Theorem 9 to still apply
here. In particular, consider again the quadratic Lyapunov
function

V (z) =
1

2
‖z − z?‖2 =

1

2
‖x− x?‖2 +

1

2
‖y − y?‖2

Taking the Lie derivative with respect to time gives

V̇ (z) = (x− x?)T ẋ+ (y − y?)T ẏ
= (x− x?)TΠX [x,−∇xS(x, y)]

+ (y − y?)TΠY [y,+∇yS(x, y)]

= (x? − x)T∇xS(x, y)− (y? − y)T∇yS(x, y)

+ (x? − x)T (−∇xS(x, y)−ΠX [x,−∇xS(x, y)])︸ ︷︷ ︸
≤0

+ (y? − y)T (∇yS(x, y)−ΠY [y,∇yS(x, y)])︸ ︷︷ ︸
≤0

≤ (z − z?)TF (z)

=
1

2

(
(z − z?)TF (z) + F (z)T (z − z?)

)
where

F (z) :=

[
−∇xS(x, y)

∇yS(x, y)

]
(40)

is defined following Theorem 9. The rest of proof is exactly
the same. �

Theorem 16 allows the generalization of the algorithms
proposed for equality-constrained optimization problems to
convex programs with inequality constraints. Next we explic-
itly demonstrate their applications.

VI. APPLICATIONS TO CONSTRAINED CONVEX
OPTIMIZATION

In this section, we apply proposed methods to constrained
convex optimization problems. Inspired by the Lagrangian of
inequality constrained convex problems, the function is convex
over x ∈ Rn but meanwhile it is just linear with respect to y ∈
Rm+ . Moreover, we look at a more specific projected version
of primal-dual dynamics:

ẋ = −∇xS(x, y), (41a)

ẏ = [+∇yS(x, y)]
+
y , (41b)

where, without loss of generality, we define the element-wise
projection [·]+y only on part of the vector field regarding y as

[∇yiS(x, y)]
+
yi

:=

{
∇yiS(x, y), if yi > 0,

max {∇yiS(x, y), 0} , otherwise.
(42)

With this projection, y(t) is constrained to be non-negative
as long as it starts with a non-negative initial point. In this
context, saddle points are restrained to ones in the non-negative
orthant of y. Therefore, any observable certificate of S(x, y)
will be defined on a saddle point (x?, y? ≥ 0) in Definition 4.
Next we formally generalize the sufficiency of observable
certificates developed in Section III-A.

Similarly, the generalization of Theorem 1 for asymptotic
convergence of the projected primal-dual dynamics (41) to a
saddle point of S(x, y) is summarized as follows.

Theorem 17. Let Assumptions 3 and 9 hold. Then the pro-
jected saddle flow dynamics (41) asymptotically converge to
some saddle point (x?, y? ≥ 0) of S(x, y).

The proof requires a lemma regarding the projection [·]+y .

Lemma 18. Given any arbitrary y, y? ∈ Rm≥0 and ν ∈ Rm,

(y − y?)T
(

[ν]
+
y − ν

)
≤ 0

holds.

We next further show how Theorem 9 generalizes to account
for the exponential convergence of (41).

Theorem 19. Let Assumptions 9, 5 and 6 hold. Then the
projected saddle flow dynamics (41) are globally exponentially
stable. More precisely, given z := (x, y),

‖z(t)− z?‖ ≤ ‖z(0)− z?‖e−ct

holds with rate
c := min{µ, q} > 0.

A. Distributed Solution to Linear Program

Theorem 17 enables the separable regularization method in
Section III-B to apply to projected saddle flow dynamics as
well since we can still identify the same observable certificate

h(x, z, y, w) :=

[
ρ
2‖y − w‖2
ρ
2‖x− z‖2

]
to satisfy Assumption 3. One of its straightforward applica-
tions involves solving inequality constrained linear programs
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in a distributed fashion with guaranteed asymptotic conver-
gence to an optimal solution.

Consider the following problem:

min
x∈Rn

cTx (43a)

s.t. Ax− b ≤ 0 : y ∈ Rm≥0 (43b)

which corresponds to a bi-linear Lagrangian

S(x, y) := cTx+ yT (Ax− b).
We introduce virtual variables z ∈ Rn, w ∈ Rm and a
constant ρ > 0 to define

S(x, z, y, w) :=
ρ

2
‖x− z‖2 + cTx+yT (Ax− b)− ρ

2
‖y−w‖2

to be its augmented Lagrangian. Lemma 6 implies that
(x?, y? ≥ 0) is a saddle point of S(x, y), i.e., one optimal
solution to (43), if and only if (x?, z? = x?, y? ≥ 0, w? = y?)
is a saddle point of S(x, z, y, w).

Then an algorithm to optimally solve a linear program of
the form (43) follows immediately from asymptotic conver-
gence of the following projected and regularized saddle flow
dynamics:

ẋ = −c−AT y − ρ(x− z) , (44a)
ż = ρ(x− z) , (44b)

ẏ = [Ax− b− ρ(y − w)]
+
y , (44c)

ẇ = ρ(y − w) , (44d)

which maintains the distributed structure where each agent i =
1, 2, . . . , n may locally manage

ẋi = −ci −ATi y − ρ(xi − zi) , (45a)
żi = ρ(xi − zi) , (45b)

and/or each dual agent j = 1, 2, . . . ,m may locally manage

ẏj = [Ajx− bj − ρ(yj − wj)]+yj , (45c)

ẇj = ρ(yj − wj) , (45d)

with Ai and Aj being the ith column and the jth row of A,
respectively.

B. Proximal Primal-Dual Dynamics of Inequality Constrained
Convex Programming

The projected version of proximal saddle flow dynamics in
Section IV-B can be applied to handle a convex program with
convex inequality constraints:

min
x∈Rn

f(x) (46a)

s.t. g(x) ≤ 0 : y ∈ Rm≥0 (46b)

where f(x) : Rn 7→ R is continuously differentiable and
convex while g(x) : Rn 7→ Rm consists of locally Lipschitz
and convex functions.

Similarly an auxiliary proximal variable u ∈ Rn is intro-
duced to formulate the following regularized problem:

min
x,u∈Rn

f(x) +
ρ

2
‖x− u‖2 (47a)

s.t. g(x) ≥ 0 : y ∈ Rm≥0 (47b)

with ρ being a constant and its Lagrangian as

L̂(x, u, y) := f(x) +
ρ

2
‖x− u‖2 + yT g(x). (48)

By further minimizing L̂(x, u, y) over the original primal
variable x, we arrive at a proximal saddle function

S(u, y) := min
x
L̂(x, u, y)

=f(x?(u, y)) +
ρ

2
‖x?(u, y)− u‖2 + yT g(x?(u, y)),

(49)
where x?(u, y) is the unique minimizer, or the unique solution
to the following equations

F (x, u, y) = 0, (50)

with F (x, u, y) being an implicit function defined as

F (x, u, y) := ∇f(x) + ρ(x− u) + JTg (x)y (51)

Denote Fx, Fu, Fy as the partial derivatives of F (x, u, y) with
respect to x, u, y, respectively.

Following [27][Theorem 2], the convexity-concavity and
continuous differentiability of S(u, y) still apply. Moreover,
if the following assumption holds, the strong convexity-
concavity is guaranteed for S(u, y).

Assumption 10. The function f(x) is µ-strongly convex
with l-Lipschitz gradient, i.e., lI � ∇2f(x) � µI when-
ever ∇2f(x) is defined. The Jacobian matrix Jg(x) is full
row rank with σI � Jg(x)Jg(x)T � κI , and locally Lipschitz
row-wise.

Remark 9. Jg(x) is full row rank implies that LICQ is
satisfied. Therefore, the uniqueness of the saddle point is
guaranteed.

Given Assumption 10, we can derive the partial derivatives
of x?(u, y) as

∂x

∂u
= −F−1x Fu = ρ

∇2f(x) + ρ+

m∑
j=1

yj∇2gj(x)

−1 ,
(52a)

∂x

∂y
= −F−1x Fy = −

∇2f(x) + ρ+

m∑
j=1

yj∇2gj(x)

−1 JTg ,
(52b)

which immediately imply the second-order partial derivatives
of S(u, y)

∂2

∂u2
S = ρI − ρ∂x

∂u
� µρ

µ+ ρ
I � 0, (53a)

∂2

∂y2
S = Jg

∂x

∂y
� − 1

l + ρ+
∑m
j=1 yj∇2gj(x)

JgJ
T
g � 0,

(53b)
where we have used the fact of yj ≥ 0 and ∇2gj(x) �
0, ∀j = 1, 2, . . . ,m. Recall (23), the above second-order
partial derivatives of S(u, y) suffice to guarantee that the
standard quadratic Lyapunov function

V (u, y) :=
1

2
‖u− u?‖2 +

1

2
‖y − y?‖2 (54)
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is non-increasing along any trajectories governed by the pro-
jected proximal saddle flow dynamics of S(u, y)

u̇ = −∇uS(u, y) , (55)

ẏ = [+∇yS(u, y)]
+
y . (56)

As a result, given an arbitrary initial point (u0, y0), the
trajectories of (55) are bounded and contained in an invariant
domain

D0(u0, y0) := {(u, y)|V (u, y) ≤ V (u0, y0)} , (57)

which is compact and convex since V (u, y) is radially
unbounded. Therefore, for any arbitrary point (u, y) ∈
D0(u0, y0), suppose ‖y‖ ≤ ȳ and ∇2gj(x) � γI , ∀j =
1, 2, . . . ,m, hold. It implies that along the trajectories starting
from (u0, y0), which are contained in D0(u0, y0),

∂2

∂y2
S � − κ

l + ρ+mȳγ
I ≺ 0 (58)

always holds.
According to Theorem 12, the projected proximal saddle

flow dynamics of S(u, y), explicitly characterized by

u̇ = ρu− ρx?(u, y) , (59a)
ẏ = [g(x?(u, y))]

+
y , (59b)

are semi-globally exponentially stable. More precisely,
given z := (u, y) and an arbitrary initial point z0 := z(0),

‖z(t)− z?‖ ≤ ‖z(0)− z?‖e−ct

holds with rate

c := min

{
µρ

µ+ ρ
,

κ

l + ρ+mȳ(z0)γ(z0)

}
> 0. (60)

Moreover, a point (u?, y?) is a saddle point of S(u, y) if
and only if (x?, y?) is an optimal primal-dual solution to the
original convex program (46) with x? = u?.

Remark 10. The bound provided by (60) on exponential
convergence rate is determined by the initial point z0. There-
fore, we can only show semi-global exponential stability of
dynamics (59) and there is no guarantee for a universal
exponential convergence rate.

C. Regularized Primal-Dual Dynamics

Explain the purpose of ((63)) We have introduced the strong
convex-concave condition that directly results in exponential
stability in Section IV. Nevertheless, numerous scenarios exist
where strongly convex-strongly concave functions are not
present. In the context of constrained convex optimization
problems, the Lagrangian exhibits bilinearity, and strong con-
cavity cannot be assured for dual variables. To address this
challenge, we proceed to employ a change of variables strategy
to harness the aforementioned concavity. As a consequence,
the resulting novel algorithm only requires milder conditions
of objective functions to achieve exponential convergence.

Consider the convex program with affine inequality con-
straints.

min
x∈Rn

f(x) (61a)

s.t. Ax− b ≤ 0 : y ∈ Rm≥0 (61b)

Define its (adjusted) Lagrangian as

L(x, y) := f(x) + ηyT (Ax− b) (62)

where η > 0 is a constant. The following change of variables

u := x+ αAT y (63)

transforms L(x, y) equivalently into

S(u, y) := f(u−αAT y) + ηyT (Au− b)− ηα‖AT y‖2, (64)

where α > 0 is also a constant.

Assumption 11. The function f(x) is µ-strongly convex
with l-Lipschitz gradient, i.e., lI � ∇2f(x) � µI when-
ever ∇2f(x) is defined. The constraint matrix A is full row
rank with σI � AAT � κI , and locally Lipschitz row-wise.

Given the structure of S(u, y), the following theorem char-
acterizes a sufficient condition that guarantees it to be a strong
saddle function.

Theorem 20. Let Assumption 11 hold. Given any η, α > 0 that
satisfy 2η > lα, S(u, y) is µ-strongly convex in u and (2ηα−
lα2)κ-strongly concave in y.

Proof. Assumption 11 allows a straightforward calculation of
the second-order partial derivatives

∂2

∂u2
S = ∇2f(u− αAT y) � µI � 0 , (65a)

∂2

∂y2
S = α2A∇2f(u− αAT y)AT − 2ηαAAT

= A
(
α2∇2f(u− αAT y)− 2ηαI

)
AT

� A(lα2 − 2ηα)IAT

� −
(
2ηα− lα2

)
κI

≺ 0 ,

(65b)

which justify the strong convexity-strong concavity of S(u, y).
�

Corollary 21. Suppose S(u, y) has at least one saddle
point (u?, y?), then its projected saddle flow dynamics

u̇ = −∇uS(u, y)

= −∇f(u− αAT y)− ηAT y (66a)
ẏ = [+∇yS(u, y)]+y

= [−αA∇f(u− αAT y) + η(Au− b)− 2ηαAAT y]+y
(66b)

are globally exponentially stable. More precisely, given v :=
(u, y),

‖v(t)− v?‖ ≤ ‖v(0)− v?‖e−ct

holds with rate

c := min
{
µ,
(
2ηα− lα2

)
κ
}
> 0.

Given the fact that the gradient of S(u, y), predicated
on ∇f(·), is Lipschitz continuous and satisfies Assumption 5,
the corollary follows from Theorem 19.
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Moreover, the saddle points of S(u, y) are related to those
of the original Lagrangian L(x, y) in (62) by

Theorem 22 (Saddle point characterization of S(u, y)).
(u?, y?) is a saddle point of S(u, y) if and only if (x?, y?)
is a saddle point of S(x, y) with u? = x? + αAT y?.

Theorem 22 is an immediate result of

∇xL(x?, y?) = 0 ⇐⇒ ∇uS(u?, y?) = 0

∇yL(x?, y?) = 0 ⇐⇒ ∇yS(u?, y?) = 0

along with the convexity of L(x, y) and S(u, y) in x and u,
respectively, and their concavity in y.

Theorem 22 inspires a novel algorithm of the regularized
primal-dual dynamics that builds on the projected saddle flow
dynamics of the strong saddle function S(u, y) to solve for
an optimal solution to the original convex program (61), i.e.,
converge to one saddle point of L(x, y). In particular, we
propose

ẋ =− (∇f(x) + ηAT y)

− αAT [−αA
(
∇f(x) + ηAT y

)
+ η(Ax− b)]+y

(67a)

ẏ = [−αA
(
∇f(x) + ηAT y

)
+ η(Ax− b)]+y (67b)

as the regularized primal dual dynamics by defining

ẋ := u̇− αAT ẏ ,
which essentially enforces

x(t) ≡ u(t)− αAT y(t) .

It implies that the trajectory of x(t) accompanies those of u(t)
and y(t), and is eventually driven to x?.

We next formally state the exponential convergence of the
above regularized primal-dual dynamics (67) to one saddle
point of the Lagrangian L(x, y).

Theorem 23. Let Assumptions 1 (in terms of L(x, y)) and 11
hold. Given any η, α > 0 that satisfy 2η > lα, the regularized
primal-dual dynamics (67) are globally exponentially stable.
More precisely, given z := (x, y),

‖z(t)− z?‖ ≤ φ‖z(0)− z?‖e−ct

where φ := max{2, 2σα2 + 1}, holds with rate

c := min
{
µ,
(
2ηα− lα2

)
κ
}
> 0.

Proof. The proof follows Corollary 21 with the following
inequalities

‖x(t)− x?‖2

= ‖(u(t)− u?)− αAT (y(t)− y?)‖2

≤ 2‖u(t)− u?‖2 + 2α2‖AT (y(t)− y?)‖2
≤ 2‖u(t)− u?‖2 + 2σα2‖y(t)− y?‖2

and
‖u(t)− u?‖2

= ‖(x(t)− x?) + αAT (y(t)− y?)‖2

≤ 2‖x(t)− x?‖2 + 2α2‖AT (y(t)− y?)‖2
≤ 2‖x(t)− x?‖2 + 2σα2‖y(t)− y?‖2 ,

which imply

‖z(t)− z?‖
≤
√

2‖u(t)− u?‖2 + (2σα2 + 1)‖y(t)− y?‖2
≤
√
φ‖v(t)− v?‖

≤
√
φ‖v(0)− v?‖e−ct

≤
√
φ
√

2‖x(0)− x?‖2 + (2σα2 + 1)‖y(0)− y?‖2e−ct
≤ φ‖z(0)− z?‖e−ct .

�

Remark 11. As a matter of fact, we can always pick η, α > 0
that satisfy 2η > lα + µ

κα to guarantee
(
2ηα− lα2

)
κ > µ

such that
c = min

{
µ, (2ηα− lα2)κ

}
= µ (68)

holds.

Remark 12. In this context, the original Lagrangian ex-
hibits m-strong convexity over x, yet it only demonstrates
linearity concerning y. By implementing a coordinate trans-
formation u = Φz, as described in (63) within this paper,
we establish exponential convergence (strict contraction) of
the primal-dual dynamics by strong convexity-strong concavity
in the new space, primarily utilizing the widely used 2-norm
metric. Upon returning to the original space, the resulting
novel algorithm undergoes strict contraction in a specific
metric µ(Φ−TQΦ−1), which is induced by the coordinate
transformation. Here, Q is constructed from the Hessian
matrix, the constraint matrix and several parameters.

D. Reduced Primal-Dual Dynamics

We discuss an alternative to the above proximal regulariza-
tion for a specific structure of the standard equality-constrained
convex program where f(x) is additively separable in terms
of xs ∈ Rns and xc ∈ Rnc with x =: [xTs , x

T
c ]T ∈ Rn

and n = ns + nc. Under this circumstance, we rewrite the
problem as

min
x

f(x) := fs(xs) + fc(xc) (69a)

s.t. Asxs +Acxc − b = 0 : y (69b)

with y ∈ Rm being the dual variable. Both fs(x) : Rns 7→ R
and fc(x) : Rnc 7→ R are assumed to be second-order
continuously differentiable and strictly convex. As and Ac are
submatrices of A that consist of the columns corresponding
to xs and xc, respectively. Instead of introducing regulariza-
tion, we use the standard Lagrangian

L(x, y) := fs(xs) + fc(xc) + yT (Asxs +Acxc − b), (70)

but minimize it over xs to attain a reduced Lagrangian

S(xc, y) := min
xs

L(x, y)

= fs(xs∗(y)) + fc(xc) + yT (Asxs∗(y) +Acxc − b)
(71)

with xs∗(y) being the unique minimizer given y such that

∇xsfs(xs∗(y)) +ATs y = 0 (72)

holds.
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Lemma 24. S(xc, y) is convex in xc, concave in y and
second-order continuously differentiable on Rnc × Rm with
gradients:

∇xc
S(xc, y) = ∇xc

fc(xc) +ATc y (73a)
∇yS(xc, y) = Asxs∗(y) +Acxc − b (73b)

Proof. It follows from (72) and the strict convexity of fs(·)
that

xs∗(y) = (∇xsfs(·))−1(−ATs y) =: g(−ATs y) (74)

is continuously differentiable. Therefore, the gradient
of S(xc, y) can be obtained using the chain rule:

∇xc
S(xc, y) = ∇xc

fc(xc) +ATc y (75a)

∇yS(xc, y) = −AsJTg∇xs
fs(xs∗(y))−AsJTg ATs y

+Asxs∗(y) +Acxc − b
= Asxs∗(y) +Acxc − b

(75b)

which allows us to further take the second-order partial
derivative as

∂2

∂xc2
S(xc, y) = ∇2

xc
fc(xc) � 0 (76a)

∂2

∂y2
S(xc, y) = −AsJTg ATs � 0 (76b)

where ∇2
xs
fs(xs) � 0 and ∇2

xc
fc(xc) � 0 follow from their

strict convexity and JTg � 0 follows from ∇2
xs
fs(xs) ·JTg ≡ I .

�

Theorem 25 (Saddle point characterization of S(xc, y)).
A point (x?, y?) is a saddle point of L(x, y) if and only
if (xc∗, y?) is a saddle point of S(xc, y) with [xTs∗(y?), x

T
c∗]

T =
x?.

Similarly, Theorem 25 basically follows from Lemma 24 as
well as

∇xc
S(xc∗, y?) = 0 ⇐⇒ ∇xL(x?, y?) = 0,

∇yS(xc∗, y?) = 0 ⇐⇒ ∇yL(x?, y?) = 0.

Therefore, we primarily concentrate on the reduced primal-
dual dynamics of S(xc, y), i.e.,

ẋc = −∇xcS(xc, y), (77a)
ẏ = +∇yS(xc, y). (77b)

Assumption 12. The function fs(x) is ms-strongly convex
with ls-Lipschitz gradient, i.e., lsI � ∇2fs(x) � msI when-
ever ∇2fs(x) is defined. Similarly, lcI � ∇2fc(x) � mcI is
assumed. The matrix As is full row rank with σsI � AsATs �
κsI , where σs := λmax(AsA

T
s ) and κs := λmin(AsA

T
s ) are

the largest and smallest eigenvalues of AsATs , respectively.

Note that Assumption 12 implicitly assumes ns ≥ m.

Theorem 26. Let Assumptions 1 and 12 hold. The reduced
primal-dual dynamics (77) are globally exponentially stable.
More precisely, given z := (xc, y),

‖z(t)− z?‖ ≤ ‖z(0)− z?‖e−ct

holds with rate

c := min

{
mc,

κs
ls

}
> 0.

Remark 13. The key enabler for the reduced primal-dual
dynamics is the separation of x into xs and xc such that
all the assumptions hold. It is possible that multiple ways of
separation exist, then optimization over separation yields the
fastest convergence rate. In this case, contrasting the algorithm
with the more general proximal saddle flow dynamics might
also suggest a better option between the two since neither of
them fully dominates the other in terms of the convergence
rate, considering κs ≤ κ and ls ≤ l.

VII. SIMULATION RESULTS

A. Network Flow Optimization

We first illustrate the asymptotic convergence of the dis-
tributed algorithm with projections for linear programs, as
guaranteed by our observable certificate, through a network
flow problem. The goal is to minimize the material transporta-
tion cost from suppliers to consumers, while simultaneously
adhering to the capacity constraints imposed on each link in
the network.

The network G(V, E) is shown in Figure (1a) with one
supplier in red and two consumers in blue. Within this con-
text, V represents the set of nodes while E is the set of edges.
The variable xij is employed to represent the quantity of
transportation from node i to node j. Given the consideration
of all relevant node constraints and capacity limitations, the
minimum flow cost problem is formulated as follows.

min 4x12 + 4x13 + 2x23 + 2x24 + 6x25 + x34

+3x35 + 3x45 + x53

s.t. x12 + x13 = 20

−x12 + x23 + x24 + x25 = 0

−x13 − x23 + x34 + x35 − x53 = 0

−x24 − x34 + x45 = −5

−x25 − x35 − x45 + x53 = −15

x12 ≤ 15, x13 ≤ 8, x24 ≤ 4

x25 ≤ 10, x34 ≤ 15, x35 ≤ 5, x53 ≤ 4

xij ≥ 0, for all (i, j) ∈ E

(78)

The equivalent compact form of this problem is

min cTx

s.t. Bx = d : y ∈ Rm

Ax ≤ b : z ∈ Rp+

(79)

where m = 5 and p = 16. We utilize a variant of the
algorithm (44) as below

ẋ = −c−BT y −AT z − ρ(x− x̄), ˙̄x = ρ(x− x̄),

ẏ = Bx− d− ρ(y − ȳ), ˙̄y = ρ(y − ȳ),

ż = [Ax− b− ρ(z − z̄)]+z , ˙̄z = ρ(z − z̄).
(80)
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By setting the regularization coefficient ρ = 0.05, results in
Figure (1b) have shown that all primary variables asymptot-
ically converge to the optimal solution of the minimum flow
cost problem.

B. Lasso Regression Problem

We use a classical lasso regression problem to test the per-
formance of algorithms and verify theoretical results. Consider
the following problem

min
x∈Rn

f(x) + λ‖x‖1, (81)

where f(x) is convex. We first handle the nonsmooth
term ‖x‖1, denoting

xi = z+i − z−i , (82a)

|xi| = z+i + z−i , (82b)

where z+i = max{xi, 0} and z−i = max{−xi, 0}. The
standard lasso regression problem (81) can be transformed
equivalently into

min
x,z

f(x) + λ1T z (83a)

s.t. Ax+Bz = 0 : y (83b)
z ≥ 0 : w ≥ 0 (83c)

where z = [z+T , z−T ]T , A = In and B = [−In, In]. Define
its Lagrangian as

L(x, z, y, w) : = f(x) + λ1T z + yT (Ax+Bz)− wT z

= f(x) + λ1T z +

[
y

w

]T [
A B

0 −I2n

]
︸ ︷︷ ︸

C

[
x

z

]
,

L(u, v) = g(u) + vTCu,
(84)

with u = (x, z) representing primary variables and v = (y, w)
being dual variables.

a) Conditioned Primal-Dual Dynamics: The
Lagrangian (84) is affine in v. In order to increase the
concavity, we apply the following change of variables

ū := u+ αCT v.

Then we obtain an equivalent Lagrangian

L̄(ū, v) = g(ū− αCT v) + vTCū− α‖CT v‖2. (85)

Combining 0 � ∇2g(u) � lI and the given structure
of L̄(ū, v), we examine the convexity and concavity of the
regularized Lagrangian over the primal-dual variables (ū, v).

Assumption 13. The function f(x) is convex with l-Lipschitz
gradient, i.e., lI � ∇2f(x) � 0 whenever ∇2f(x) is defined.
The constraint matrix C is full row rank with σI � CCT �
κI , and locally Lipschitz row-wise.

Lemma 27. Given any α > 0 that satisfy α < 2
l , L̄(ū, v)

is (2α− lα2)κ-strongly concave in v.

b) Proximal Primal-Dual Dynamics: According to
Lemma 27, we cannot illustrate the strongly convexity in ū just
by the change of variables. Next, the proximal regularization
is used to increase the convexity. The modified Lagrangian is
defined as

L̃(ū, v, v̄) = g(ū− αCT v) + vTCū− α‖CT v‖2 − ρ

2
‖v − v̄‖2.

(86)
By minimizing the modified Lagrangian over the variable x,
we attain a proximal saddle function as

S(ū, v̄) := max
v∈Dv

L̃(ū, v, v̄), (87)

where Dv = Rn ×R2n
+ . Since L̃(ū, v, v̄) is strongly concave

in v, (87) can be rewritten as

S(ū, v̄) = g(ū− αCT v?(ū, v̄) + v?(ū, v̄)TCū

− α‖CT v?(ū, v̄)‖2 − ρ

2
‖v?(ū, v̄)− v̄‖2. (88)

where v?(ū, v̄) is the unique minimizer given (ū, v̄) such that

v?(ū, v̄) = arg max
v∈Dv

L̃(ū, v, v̄). (89)

The proximal saddle flow dynamics of S(u, y) is as follow:

˙̄u = −∇g
(
ū− αCT v?(ū, v̄)

)
− CT v?(ū, v̄), (90a)

˙̄y = +ρv?(ū, v̄)− ρv̄. (90b)

Similarly, (ū, ȳ) converges to the saddle point (x?, y?) due to
the invariance of the saddle point.

We illustrate the exponential convergence of (90) via a
simple Lasso Regression Problem as:

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (91)

where b is observation vector and A ∈ Rn×n is known data.
The observation is given by b = Ax + e with some noise e
and the goal is to estimate x. By applying the algorithm (90)
to solve this problem, results are demonstrated in Figure 2.
Primal variables and dual variables both converge to the
optimal solution with exponential convergence rates.

Remark 14. The equation (88), representing a constrained
saddle function, contrasts with equation (26). This distinction
implies that the previously discussed analysis, which hinges
on the Jacobian matrix to determine convergence rates, is
not directly applicable in this context. Nevertheless, numerical
evidence suggests that exponential convergence may still hold.
This observation raises the possibility that the analysis could
be generalized to encompass a broader range of forms.

VIII. CONCLUSION

This paper has advanced the understanding of the conver-
gence properties of saddle flow dynamics, purely depends on
the special attributes of saddle functions. Initially, We first
propose an observable certificate that directly establishes con-
nection between the invariant set and the equilibrium set for
saddle flow dynamics of a convex-concave function such that
the asymptotic convergence to a saddle point can be guaran-
teed. The certificate is rooted in observability, and we identify
the existence of such observable certificates in the presence
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Fig. 1: The network flow problem.
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Fig. 2: The lasso regression problem.

of conventional conditions, e.g., strict convexity-concavity and
proximal regularization, as well as the proposed separable reg-
ularization method. The novel separable regularization method
that builds on our observable certificate requires only minimal
convexity-concavity to establish convergence and enjoys a
separable structure for potential distributed implementation.
Furthermore, our work reveals the direct relationship between
global exponential stability in saddle flows and the presence
of strong convexity-strong concavity conditions. This insight
not only elucidates the convergence properties of established
algorithms, such as the proximal gradient method in equality-
constrained convex optimization but also underpins our novel
conditioned primal-dual gradient algorithms. Practically, our
findings further generalize to situations with projections on
the vector field of saddle flow dynamics.

APPENDIX

A. Proof of Lemma 27

Proof. Assumption 13 allows a straightforward calculation of
the second-order partial derivatives

∂2

∂ū2
L̄(ū, v) = ∇2g(ū− αCT v) � 0 , (92a)

∂2

∂v2
L̄(ū, v) = α2C∇2g(ū− αCT v)CT − 2αCCT

= C
(
α2∇2g(ū− αCT v)− 2αI

)
CT

� C(lα2 − 2α)CT

� −
(
2α− lα2

)
κI

≺ 0 ,

(92b)

which justifies the claim. �
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