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Abstract

Two-stage electricity market clearing is designed to maintain market efficiency under ideal conditions, e.g., perfect forecast
and nonstrategic generation. This work demonstrates that the individual strategic behavior of inelastic load participants in a
two-stage settlement electricity market can deteriorate efficiency. Our analysis further implies that virtual bidding can play a
role in alleviating this loss of efficiency by mitigating the market power of strategic load participants. We use real-world market
data from New York ISO to validate our theory.

I. INTRODUCTION

Electricity markets are designed to complement physical power systems by utilizing prices or other monetary incentives to
motivate efficient system operation. Wholesale electricity markets generally consist of two-stage settlement. The first stage
is a day-ahead market where participants buy or sell electricity through bids or offers on an hourly basis. An independent
system operator (ISO) determines the hourly generation and load schedules along with the corresponding day-ahead clearing
prices for the next day. The second stage is a real-time market where participants trade in the same way at the real-time
clearing prices on a smaller timescale, usually every five minutes, to offset any discrepancy between day-ahead commitments
and actual generation/load.

The day-ahead and real-time markets are tightly coupled via time-varying supply, demand and prices [1]. The two-stage
settlement is designed to maintain equal day-ahead and real-time prices such that no speculator is able to perform arbitrage,
i.e., to enforce the so-called no-arbitrage condition. However, the two stages are settled separately in practice and identical
prices in the day-ahead and real-time markets are therefore not directly enforced [2]. The difference between a day-ahead
price and its real-time counterpart is technically termed a price spread. Any nonzero spread is generally considered a loss of
efficiency [3]. Situations that result in systematic nonzero spreads include external factors, such as load forecast errors [4],
non-scheduled generator shutdowns or line maintenance, as well as internal market power generally exercised by strategic
generators [5].

Transactions that are not intended for physical fulfillment in real time but holding financial positions for arbitrage are
referred to as virtual bids. Virtual bids primarily consist of decrement bids that buy electricity in the day-ahead market with
the obligation to sell back the same amount in the real-time market, as well as increment offers that work exactly in the
opposite way [6]. See [7]–[10] for various examples of virtual bidding strategies. Virtual bidding is a valuable component
of the two-stage settlement design that contributes to increasing market liquidity and mitigating market power by allowing
extra asset-free participants to compete in electricity markets. This practice has proven, through both real observation [11]
and theoretical analysis [3], [12]–[14], to improve market efficiency by driving day-ahead and real-time prices to converge.

Despite the aforementioned studies, little attention has yet been paid to the strategic behavior of load participants in
electricity markets, which may also play a role in degrading market efficiency. The load side is usually less regulated due to
its inelasticity, which leaves load participants more freedom to make strategic decisions. Conceptually, even with inelastic
demand, a load participant enjoys the flexibility of two-stage settlement, which potentially enables it to exercise market
power.

In this paper, we look at the role of strategic inelastic load participants that take advantage of the two-stage settlement
mechanism. We first establish a simple two-stage settlement market model that assumes (fully regulated) nonstrategic
generation to characterize the inherent connection between the day-ahead and real-time markets. The strategic behavior
of load participants is then analyzed through a Cournot game. We further extend the framework to accommodate decrement
bids in virtual bidding as a special case of strategic inelastic load participation in electricity markets. Real-world market
data from New York ISO (NYISO) are employed for validation.

Our analysis has multiple implications. First, the proposed market model unveils the underlying mechanism that relates the
no-arbitrage condition with market efficiency while maintaining realistic market settlement conditions such as the day-ahead
cleared load being approximately equal to the total load for efficiency. Second, we identify adverse impacts of strategic
behavior by inelastic load participants that induces negative spreads and deteriorates efficiency in electricity markets, despite
perfect forecast and nonstrategic generation. Third, we show that virtual bidding is an effective solution to alleviating the
loss of market efficiency caused by strategic load participants.
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The rest of the paper is organized as follows. Section II introduces our electricity market model. The role of strategic
behavior by inelastic load participants is then analyzed in Section III. Empirical validation using real-world data follows in
Section IV. Section V concludes the paper.

II. ELECTRICITY MARKETS MODEL

In this section we describe the proposed electricity market model for the two-stage settlement mechanism. Consider an
electricity market that consists of a day-ahead market and a real-time market. Assume that the generation side is highly
regulated and all generators are non-strategic, i.e., they reveal their true cost functions1. The generators are categorized into
two sets based on whether they are sufficiently fast to participate in the real-time market. Let F and S respectively denote
the sets of fast-responsive and slow-responsive generators. Slow-responsive generators can only participate in the day-ahead
market while fast-responsive generators are able to participate in both markets. For a fast-responsive generator i ∈ F that
outputs an amount of power xfi ≥ 0, we assume a quadratic cost function of the form

Cfi (x
f
i ) :=

αfi
2
xf2i + βfi x

f
i , (1)

where αfi > 0 and βfi are constant cost coefficients. Similarly, we denote the cost function of a slow-responsive generator
j ∈ S by

Csj (x
s
j) :=

αsj
2
xs2j + βsjx

s
j , (2)

where xsj ≥ 0, αsj > 0 and βsj are defined accordingly. We then define the associated vectors as xf := (xfi , i ∈ F) and
xs := (xsj , j ∈ S).

A. Two-Stage Settlement

The two-stage settlement mechanism meets a total inelastic load of d > 0 by clearing it efficiently but separately in the
day-ahead and real-time markets. Denote the day-ahead cleared portion as dDA and the real-time cleared portion as dRT

such that d = dDA + dRT . In the slow-timescale day-ahead market, all of the generators in F and S are involved to clear
the load dDA based on the following:
Day-ahead market clearing problem

min
xf ,xs≥0

∑
i∈F

Cfi (x
f
i ) +

∑
j∈S

Csj (x
s
j) (3a)

s.t.
∑
i∈F

xfi +
∑
j∈S

xsj = dDA : λDA, (3b)

where λDA is the dual Lagrange multiplier for the equality constraint (3b). Due to strong convexity, (3) has a unique
minimizer which we denote as (xf∗, xs∗). Since (3b) is affine, the KKT conditions suggest that all of the participating
generators should have an identical marginal cost that equals the optimal dual Lagrange multiplier2:

λDA = αfi x
f∗
i + βfi = αsjx

s∗
j + βsj , ∀i ∈ F , j ∈ S, (4)

where we abuse λDA to denote its optimum. λDA, technically termed the shadow price in economics [15], is the minimum
price to incentivize generators to output the desired amount of power, which captures marginal generation cost.

Combining (3b) and (4) results in
λDA = αDAdDA + βDA, (5a)

where

αDA :=

∑
i∈F

1

αfi
+
∑
j∈S

1

αsj

−1 , (5b)

and

βDA :=

∑
i∈F

1

αfi
+
∑
j∈S

1

αsj

−1∑
i∈F

βfi

αfi
+
∑
j∈S

βsj
αsj

 . (5c)

1In real electricity markets, piecewise linear generation offers are made as a proxy for true generation cost functions, which are assumed to be known
by the ISO here for ease of analysis.

2For illustration purposes, throughout this paper we restrict our considerations to the case where the constraints xfi ≥ 0, i ∈ F and xsj ≥ 0, j ∈ S are
not binding.



Here αDA and βDA serve as the aggregate pricing coefficients. The expressions in (5) implicitly reflect the elasticity of
supply, defined as the responsiveness of the quantity of power supplied to a change in its price, in the day-ahead market.
Basically, given the market price λDA, the generators are willing to output a total amount of power dDA. In other words,
to clear the load dDA in the day-ahead market, the clearing price needs to be set at λDA.

The fast-timescale real-time market clears in the same way as the day-ahead market except that only fast-responsive
generators in F are involved. Note that these generators have also participated in the day-ahead market and have already
been scheduled to output xf∗. Therefore, in order to clear the load dRT , the real-time market solves the following optimization
problem:
Real-time market clearing problem

min
δxf

∑
i∈F

Cfi (x
f∗
i + δxfi ) (6a)

s.t.
∑
i∈F

δxfi = dRT : λRT . (6b)

Here δxfi denotes the scheduled output adjustment from xf∗ for generator i ∈ F and δxf := (δxfi , i ∈ F). λRT is the
(optimal) dual Lagrange multiplier for the equality constraint (6b). Note that the cost of fast-responsive generators in the
day-ahead market, i.e.,

∑
i∈F (

αf
i

2 x
f∗2
i + βfi x

f∗
i ), should be subtracted from the objective function to represent the exact

total cost for clearing the real-time load dRT . We ignore this constant term for brevity.
We denote the unique minimizer of (6) as δxf∗ and deduce the following from the KKT conditions:

λRT = αfi (x
f∗
i + δxf∗i ) + βfi = αfi δx

f∗
i + λDA, ∀i ∈ F , (7)

where the second equality follows directly from (4). Substituting (7) into (6b) yields

λRT = αRT dRT + βRT , (8a)

where

αRT :=

(∑
i∈F

1

αfi

)−1
(8b)

and
βRT := λDA. (8c)

Here αRT and βRT are the aggregate pricing coefficients that embody the elasticity of supply in the real-time market.
Meanwhile, (8) also unveils the inherent correlation between the day-ahead and real-time prices: the latter deviates from the
former to account for the real-time cleared load. See Fig. 1. Formally, the price spread between the day-ahead and real-time
prices is

λDA − λRT = −

(∑
i∈F

1

αfi

)−1
dRT . (9)

Day-ahead load

Real-time load

Day-ahead/real-time price
Negative spread

0

!"#

$"#

$%&

'%&

'"#

!%&
(%&

Fig. 1: Correlation between day-ahead and real-time prices.

Remark 1: Notably, according to (5), (8), we always have αRT > αDA > 0, as Fig. 1 illustrates, due to a smaller subset
of generators involved in the real-time market. This is consistent with the observation that real-time prices are more volatile



than day-ahead prices, since the real-time market typically has a smaller price elasticity of supply than the day-ahead market,
i.e., the quantity of power supply in the real-time market is less sensitive to a change in its price than that in the day-ahead
market.

B. Market Efficiency

We next formalize our definition of market efficiency. Given all the available generators in F and S, we define market
efficiency as the minimum of social cost to meet the total inelastic load d, which is specifically realized by solving the
following:
Social cost minimization problem

min
xf ,xs≥0

∑
i∈F

Cfi (x
f
i ) +

∑
j∈S

Csj (x
s
j) (10a)

s.t.
∑
i∈F

xfi +
∑
j∈S

xsj = d : λ, (10b)

i.e., jointly optimizing the dispatch of all the generators across the two markets. We define the (optimal) dual Lagrange
multiplier λ for the equality constraint (10b) and denote the unique minimizer of (10) by (xf#, xs#). The KKT conditions
require

λ = αfi x
f#
i + βfi = αsjx

s#
j + βsj , ∀i ∈ F , j ∈ S, (11)

i.e., equal marginal cost for all of the participating generators, to achieve efficiency.
Recall that the day-ahead price equals the marginal cost of slow-responsive generators in (4) while the real-time price

equals the marginal cost of fast-responsive generators in (7). By comparing (4) and (7) with the indicator of market efficiency
(11), we arrive at the following theorem:

Theorem 1: In the two-stage settlement electricity market, efficiency can only be realized when

λDA = λRT = λ (12)

i.e., the day-ahead and real-time prices equalize, which further implies

dDA = d, dRT = 0. (13)
Theorem 1 matches exactly the intuition of the two-stage settlement design: all (forecast) load should be cleared in the day-
ahead market while the real-time market accounts for any load deviation from the forecast. It also suggests that efficiency is
consistent with the no-arbitrage condition between the two-stage markets, guaranteed by the zero spread from (12), which
is necessary for the market model to be realistic.

Similar models for the two-stage settlement mechanism have been used in [4], [16], [17]. However, our simple model
further addresses several issues that are missing in these previous works, e.g., the fact that the day-ahead cleared load
should equal the total load is not accounted for in [16], [17]; the correlation between the no-arbitrage condition and market
efficiency is not demonstrated in [4].

III. STRATEGIC LOAD PARTICIPANT

Given the two-stage settlement mechanism, an electricity market should clear all of the load in the day-ahead market and
zero load in the real-time market in order to achieve efficiency. However, we observe that in the NYISO market there is an
obvious positive bias for real-time loads throughout the year of 2018, as shown in Fig 2, which cannot be accounted for
by uncertainties. We attribute this loss of efficiency to strategic behavior by inelastic load participants and next investigate
their market power by taking advantage of the two-stage settlement mechanism. Ideal assumptions of perfect forecast and
nonstrategic generation are made to focus our attention on the impact of strategic load. As we will see below, our analysis
extends naturally to accommodate the role of virtual bidding.

A. Single Load

We start with the simplest case where there is only one single inelastic load d to be cleared. It has the option to participate
in either one of or both of the day-ahead and real-time markets to meet its demand. The participation of the load in the
two markets affects the market clearing prices, which in turn determine its cost. For analysis purposes, we assume the load
has full knowledge of the supply elasticity of both markets, i.e., it knows the exact values of αDA, βDA, αRT , βDA, e.g.,
through estimates based on long-term historical data3.

3Since the set of participating generators in an electricity market and their cost functions are usually stable subject to subtle changes in the long run, it
is reasonable to argue those coefficients that characterize the dependence of market prices on the amount of cleared load are approximately constant and
easy to estimate.
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Fig. 2: Day-ahead and real-time cleared loads, NYISO, 2018.

A strategic load will anticipate the impact of its decision on the two markets and minimize the expenditure of purchasing
electricity to meet its demand accordingly. Formally, it solves the following:
Single load cost minimization problem4

min
dDA≥0,dRT

λDA(dDA) · dDA + λRT (dDA, dRT ) · dRT (14a)

s.t. dDA + dRT = d. (14b)

Theorem 2: The optimal load participation for a single load in the two-stage settlement electricity market is uniquely
determined by

dDA∗ =

(
1− αDA

2αRT

)
d, dRT∗ =

αDA

2αRT
d, (15)

i.e., d > dDA∗ > 1
2d > 0 and 1

2d > dRT∗ > 0. Therefore, λRT > λDA and a strictly negative spread, as defined in (9),
follow.

Proof: First of all, we relax the constraint dDA ≥ 0 and show that it is not binding at the optimum. Given the explicit
expressions of λDA(dDA) and λRT (dDA, dRT ) in (5) and (8), we can substitute (14b) into (14a) to reorganize the objective
function in terms of dDA only:

λDA(dDA) · dDA + λRT (dDA, dRT ) · dRT

= λDA(dDA) · dDA + (αRT dRT + λDA(dDA)) · dRT

= (αDAdDA + βDA)d+ αRT (d− dDA)2

= αRT dDA2 + (αDAd− 2αRT d)dDA + βDAd+ αRT d2.

The unique minimizer of the above unconstrained optimization is straightforwardly obtained by the first-order optimality
condition, i.e., (15). Recall αRT > αDA > 0, which implies d > dDA∗ > 1

2d > 0 and 1
2d > dRT∗ > 0. The relaxed

constraint is satisfied and (15) is also the unique optimum of (14).
Remark 2: The negative spread indicates the loss of market efficiency caused by the strategic behavior of a single

inelastic load participant in the two-stage settlement electricity market. Meanwhile, the strictly positive load participation in
the real-time market coincides with the observation of positive bias for real-time loads in Fig. 2.

The single-load case serves as a toy example. Next we proceed to characterize the general case with market competition
and analyze its impact on efficiency.

B. Load-Side Cournot Competition

We extend the above analysis to the case with multiple individual strategic loads, e.g., different local utility companies in
a market. Let L := {1, 2, . . . , L} be the set of these loads. Each load l ∈ L can independently determine its participation,
~dl := (dDAl ≥ 0, dRTl ), in the day-ahead and real-time markets in order to satisfy its inelastic demand dl with

dDAl + dRTl = dl, l ∈ L. (16)

4Note that on the load side we constrain nonnegative load participation in the day-ahead market to maintain the identity as a load.



Let ~d := (~dl, l ∈ L) be the aggregate decisions for all of the loads. Further denote the aggregate decisions for all of the
loads except load l as ~d−l. Suppose that all of the loads are aware of the mechanism that determines market prices, i.e.,

λDA = αDAdDA + βDA, λRT = αRT dRT + βRT , (17)

where dDA :=
∑
l∈L d

DA
l and dRT :=

∑
l∈L d

RT
l . Define d :=

∑
l∈L dl as the total load to be cleared. Each load l will

aim to minimize its expenditure of purchasing electricity from the two markets to meet demand given other loads’ decisions,
i.e.,

min
~dl

cl(~dl; ~d−l) := λDA(~d) · dDAl + λRT (~d) · dRTl (18a)

s.t. (16). (18b)

These loads compete in quantities of participation in the two markets that affect market clearing prices and seek to
minimize individual cost, which can be formalized as a Cournot game:
Load-side Cournot game
Players: each load l ∈ L;
Strategies: load participation ~dl in the day-ahead and real-time markets to satisfy (16);
Costs: expenditure of purchasing electricity cl(~dl; ~d−l).

Definition 1: ~d∗ is a Nash equilibrium of the load-side Cournot game if it satisfies cl(~d∗) ≤ cl(~dl; ~d∗−l) for any ~dl, ∀l ∈ L.
At a Nash equilibrium, no load has the incentive to deviate from its current decision unilaterally, given other loads’ decisions.
In order to characterize the Nash equilibrium of the load-side Cournot game, we first propose the following lemma:

Lemma 1: There do not exist equilibria of the load-side Cournot game where dDA∗l = 0 for some l ∈ L.
Refer to the appendix for the proof. Given Lemma 1, the possibility of Nash equilibria with any of the constraints dDAl ≥
0, l ∈ L binding is excluded and we next prove the existence and uniqueness of the Nash equilibrium of the load-side
Cournot game by ignoring these constraints:

Theorem 3: In the two-stage settlement electricity market, there exists a unique Nash equilibrium of the load-side Cournot
game, characterized by

dDA∗
l =

(
1− LαDA

(L+ 1)αRT

)
dl +

αDA

(L+ 1)αRT

∑
k∈L\{l}

dk,

dRT∗
l =

LαDA

(L+ 1)αRT
dl −

αDA

(L+ 1)αRT

∑
k∈L\{l}

dk,

(19)

for ∀l ∈ L.
Proof: Given (16) and (17), the expenditure function cl(~dl; ~d−l) of each load l in (18) can be rewritten explicitly in

terms of dDAl only as follows.

λDAdDA
l + λRT dRT

l

= (αDA
∑
k∈L

dDA
k + βDA)dDA

l + (αRT (d−
∑
k∈L

dDA
k ) + βRT )(dl − dDA

l )

= (αDA
∑
k∈L

dDA
k + βDA)dl + αRT (d−

∑
k∈L

dDA
k )(dl − dDA

l )

= αDAdld
DA
l + αRT

∑
k∈L\{l}

(dk − dDA
k )(dl − dDA

l ) + αRT (dl − dDA
l )2 + αDA

∑
k∈L\{l}

dDA
k dl + βDAdl,

where the second equality follows from βRT = λDA. Given Lemma 1 and the strict convexity of the expenditure function
cl(~dl; ~d−l) in dDAl , the Nash equilibrium of the load-side Cournot game can be characterized by imposing the first-order
optimality condition on all the loads, i.e., for ∀l ∈ L,

αDAdl − αRT
∑

k∈L\{l}

(dk − dDA∗k )− 2αRT (dl − dDA∗l ) = 0, (20)

or equivalently,

dDA∗l =

(
1− αDA

2αRT

)
dl +

1

2

∑
k∈L\{l}

(dk − dDA∗k ). (21)

Note that the first term on the right-hand side of (21) is exactly the individual optimum without any competitors in (15),
while the second term represents the influence of competition. Intuitively, if other loads participate more in the real-time
market, load l will increase its participation in the day-ahead market to hedge against rising real-time prices.

Combining (21) for all l ∈ L naturally yields the unique solution (19). We can readily observe dDA∗l > 0, which is
consistent with Lemma 1. The theorem follows.



By summing (19) over L and reorganizing the expression, we are able to derive the following:
Corollary 1: At the Nash equilibrium of the load-side Cournot game, the total day-ahead load and real-time load are

respectively ∑
l∈L

dDA∗l =

(
1− αDA

(L+ 1)αRT

)∑
l∈L

dl,

∑
l∈L

dRT∗l =
αDA

(L+ 1)αRT

∑
l∈L

dl,

(22)

which implies d > dDA∗ > L
L+1d and 1

L+1d > dRT∗ > 0. Therefore, λRT > λDA and a strictly negative spread follow.
Remark 3: Notably, the optimal load participation (15) in the single-load case is a special case of (22) where L = 1.

Corollary 1 generalizes the conclusion to multi-load cases, and specifically it states that the strategic behavior of load
participants even with inelastic demand can reduce market efficiency by taking advantage of the two-stage settlement
mechanism. However, as the number of load participants L increases, the total day-ahead load approaches the total load
and the spread diminishes towards zero, meaning the restoration of market efficiency. This is consistent with the intuition
that when there are infinite participants, the individual impact on market prices becomes negligible and therefore the market
power of each strategic load vanishes, which drives the market to be competitive.

C. The Role of Virtual Bidding

Virtual bidding is an essential part of competitive electricity markets as it mitigates market power. Virtual bidders profit
from arbitrage on nonzero spreads. As analyzed above, we have demonstrated that systematic negative spreads can result
from the strategic behavior of load participants. However, through an extended analysis of the prior load-side Cournot
competition, we now show decrement bids in virtual bidding that act like load participation play an important role in driving
these spreads to zeros.

In particular, consider a set V := {1, 2, . . . , V } of virtual bidders. They individually determine their participation
(dDAv , dRTv ), v ∈ V to compete in the day-ahead and real-time markets in pursuit of arbitrage. However, they differ from real
load participants l ∈ L in that no real demand needs to be satisfied, i.e., dv = 0, v ∈ V . The following theorem characterizes
the involvement of these virtual bidders in the load-side Cournot game:

Theorem 4: In the two-stage settlement electricity market, there exists a unique Nash equilibrium of the load-side Cournot
game with virtual bidders, where the virtual bids are given by

dDA∗v =
αDA

(L+ V + 1)αRT

∑
l∈L

dl,

dRT∗v = − αDA

(L+ V + 1)αRT

∑
l∈L

dl,

(23)

for ∀v ∈ V .
Here dDA∗v > 0 represents a decrement bid.

Corollary 2: At the Nash equilibrium of the load-side Cournot game with virtual bidders, the total day-ahead load and
real-time load are respectively ∑

l∈L

dDA∗
l +

∑
v∈V

dDA∗
v =

(
1− αDA

(L+ V + 1)αRT

)∑
l∈L

dl,

∑
l∈L

dRT∗
l +

∑
v∈V

dRT∗
v =

αDA

(L+ V + 1)αRT

∑
l∈L

dl,

(24)

which implies d > dDA∗ > L+V
L+V+1d and 1

L+V+1d > dRT∗ > 0. As the number of virtual bidders V goes to infinity, the
total day-ahead load approaches the total load and the spread converges to zero.

Remark 4: Virtual bidders have the incentive to arbitrage over the negative spread resulting from the strategic behavior
of load participants, which in turn contributes to alleviating the loss of market efficiency by driving the two-stage market
prices to equalize.

Remark 5: From (24), the real demand from load participants in the day-ahead market remains positive but actually
decreases in the number of virtual bidders V , as captured below:∑

l∈L

dDA∗l =

(
1− (V + 1)αDA

(L+ V + 1)αRT

)∑
l∈L

dl. (25)



TABLE I: Linear regression for λDA = αDAdDA + βDA

Estimate Standard error p-value RMSE R2

αDA 2.4535 0.0208 < 0.001
5.7128 0.6518

βDA 0.7848 0.2253 < 0.001

TABLE II: Linear regression for λRT = αRT dRT + γλDA + δ

Estimate Standard error p-value RMSE R2

αRT 5.2658 0.1833 < 0.001
10.2941 0.4444γ 1.0009 0.0132 < 0.001

δ -8.2569 0.4980 < 0.001

IV. REAL-WORLD DATA VALIDATION

We next employ real-world electricity market data from NYISO to verify the extent to which our model and analysis
reflect real market conditions.

A. Electricity Market Model

Day-ahead and real-time loads and prices are collected for the whole year of 20185. Uniform energy clearing prices are
adopted instead of locational marginal prices since emphasis of our analysis is on the two-stage settlement mechanism rather
than the physical constraints of power networks. Fig. 3 is a scatterplot of day-ahead prices with respect to day-ahead loads.
As (5) suggests, a day-ahead price should be linear in the corresponding day-ahead load. The linear regression result in
Table I shows that both of the pricing coefficients αDA and βDA are statistically significant. Fig. 4 is a scatterplot of negative
spreads, i.e., λRT − λDA, with respect to real-time loads to justify the connection between the day-ahead and real-time
prices, identified in (9). A multiple linear regression of real-time prices on real-time loads and day-ahead prices is carried
out yielding the result in Table II, which confirms that the linearity approximately holds. As analyzed, the coefficient γ for
day-ahead prices is almost 1 and αRT > αDA is observed. However, the proposed model cannot account for the negative
intercept δ. This could be caused by factors that our analysis neglects, such as strategic generation.
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Fig. 3: Day-ahead price with respect to day-ahead load, NYISO, 2018.

B. Virtual Bidding

To validate our analysis of strategic load participants, we assess the special case of virtual bidding due to its significant
and verifiable impact on market clearing. The mechanism of virtual bidding was officially introduced into the NYISO market
in November, 2001 [18]. We collected available data of real loads cleared in the day-ahead market and total actual loads
for the several months around that time point to validate the deduction in Remark 5. It is reasonable to assume V = 0 prior

5Note that several periods of time, such as Jan. 1-9 and May 21-31, that exhibit extremely abnormal price elasticity of supply are removed.
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Fig. 4: Negative spread with respect to real-time load, NYISO, 2018.

to the introduction of virtual bidding while V > 0 thereafter. As a result, the proportion 1− (V+1)αDA

(L+V+1)αRT is anticipated to
diminish with virtual bidding introduced, which is precisely captured by the sudden drop in Fig. 56.
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Fig. 5: Percentage of day-ahead real load in total load, NYISO, 2001/2002. The introduction of virtual bidding in November,
2001 caused a sudden drop in this percentage.

V. CONCLUDING REMARKS

This paper develops a model for two-stage settlement electricity markets that explicitly characterizes the interconnection
between day-ahead and real-time markets. Given the model, we attribute systematic negative spreads in electricity markets
to the strategic behavior of inelastic load participants that takes advantage of the two-stage settlement mechanism. We
therefore argue that strategic load participation in electricity markets should be taken into account in the characterization
of nonzero spreads, in addition to empirical factors like load forecast errors or market power of strategic generators. Our
analysis generalizes to accommodate virtual bidding and demonstrates its role in improving market efficiency by mitigating
market power. Real-world market data from NYISO support our theory.

Our model and analysis focus on strategic behavior by inelastic load participants only and are thus not able to account for
other factors that can also result in loss of market efficiency. A more comprehensive framework is the subject of ongoing
work.

REFERENCES

[1] J. Pang, P. You, and M. Chen, “Temporally networked Cournot platform markets,” in Proc. of 51st Hawaii International Conf. on System Sciences
(HICSS), pp. 3427–3436, 2018.

6Note that the total load in the NYISO market includes a significant part that is cleared through bilateral transactions outside the market. Therefore, the
overall percentage is low.



[2] New York ISO, “Energy market & operational data.” https://www.nyiso.com/energy-market-operational-data. Accessed: 2019-
03-17.

[3] W. W. Hogan, “Virtual bidding and electricity market design,” The Electricity Journal, vol. 29, no. 5, pp. 33–47, 2016.
[4] W. Tang, R. Rajagopal, K. Poolla, and P. Varaiya, “Model and data analysis of two-settlement electricity market with virtual bidding,” in Proc. of

55th IEEE Conf. on Decision and Control (CDC), pp. 6645–6650, 2016.
[5] N. A. Ruhi, K. Dvijotham, N. Chen, and A. Wierman, “Opportunities for price manipulation by aggregators in electricity markets,” IEEE Trans. on

Smart Grid, vol. 9, no. 6, pp. 5687–5698, 2018.
[6] PJM Interconnection, “Virtual transactions in the PJM energy market.” https://www.pjm.com/- /media/committees- groups/

committees/mc/20151019- webinar/20151019- item- 02- virtual- transactions- in- the- pjm- energy- markets-
whitepaper.ashx. Accessed: 2019-03-08.

[7] S. Baltaoglu, L. Tong, and Q. Zhao, “Algorithmic bidding for virtual trading in electricity markets,” IEEE Trans. on Power Systems, vol. 34, no. 1,
pp. 535–543, 2019.

[8] E. Mashhour and S. M. Moghaddas-Tafreshi, “Bidding strategy of virtual power plant for participating in energy and spinning reserve markets—Part
I: Problem formulation,” IEEE Trans. on Power Systems, vol. 26, no. 2, pp. 949–956, 2011.

[9] E. Mashhour and S. M. Moghaddas-Tafreshi, “Bidding strategy of virtual power plant for participating in energy and spinning reserve markets—Part
II: Numerical analysis,” IEEE Trans. on Power Systems, vol. 26, no. 2, pp. 957–964, 2011.

[10] M. Rahimiyan and L. Baringo, “Strategic bidding for a virtual power plant in the day-ahead and real-time markets: A price-taker robust optimization
approach,” IEEE Trans. on Power Systems, vol. 31, no. 4, pp. 2676–2687, 2016.

[11] L. Hadsell, “The impact of virtual bidding on price volatility in New York’s wholesale electricity market,” Economics Letters, vol. 95, no. 1, pp. 66–72,
2007.

[12] A. G. Isemonger, “The benefits and risks of virtual bidding in multi-settlement markets,” The Electricity Journal, vol. 19, no. 9, pp. 26–36, 2006.
[13] M. Celebi, A. Hajos, and P. Q. Hanser, “Virtual bidding: The good, the bad and the ugly,” The Electricity Journal, vol. 23, no. 5, pp. 16–25, 2010.
[14] J. Mather, E. Bitar, and K. Poolla, “Virtual bidding: Equilibrium, learning, and the wisdom of crowds,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 225–232,

2017.
[15] D. S. Kirschen and G. Strbac, Fundamentals of power system economics. John Wiley & Sons, 2018.
[16] H. Bessembinder and M. L. Lemmon, “Equilibrium pricing and optimal hedging in electricity forward markets,” the Journal of Finance, vol. 57,

no. 3, pp. 1347–1382, 2002.
[17] S. Zhang, C. Chung, K. Wong, and H. Chen, “Analyzing two-settlement electricity market equilibrium by coevolutionary computation approach,”

IEEE Trans. on Power Systems, vol. 24, no. 3, pp. 1155–1164, 2009.
[18] B. de Mello and N. Bouchez, “Virtual bidding in the NYISO.” https://www.caiso.com/Documents/VirtualBiddinginNYISO-

Presentation.pdf. Accessed: 2019-03-17.

APPENDIX

PROOF OF LEMMA 1

Proof: We prove this lemma by contradiction. Assume there exists a Nash equilibrium where dDA∗l = 0 for some
l ∈ L. Define L′ as the set of the remaining loads with dDA∗l > 0 and let L′ := |L′|. Note that the expenditure function
cl(~dl; ~d−l) of each load l ∈ L can be rewritten as a strictly convex function in terms of dDAl only; see (??). For each load
l ∈ L\L′ with dDA∗l = 0, the first-order optimality condition does not hold, i.e.,

dDA∗l = 0 ≥ (1− αDA

2αRT
)dl +

1

2

∑
k∈L\{l}

(dk − dDA∗k ) =
αRT − αDA

2αRT
dl +

1

2

∑
k∈L

dk −
1

2

∑
k∈L′

dDA∗k . (26)

However, the first-order optimality condition holds for the loads l ∈ L′, which can be expressed as

dDA∗l =
αRT − αDA

2αRT
dl +

1

2

∑
k∈L

dk −
1

2

∑
k∈L′\{l}

dDA∗k , (27)

where we replace L with L′ since dDA∗l = 0, l ∈ L\L′. Summing (27) over L′ and reorganizing the expression lead to∑
l∈L′

dDA∗l =

(
1− αDA

(L′ + 1)αRT

)∑
l∈L′

dl +
L′

L′ + 1

∑
l∈L\L′

dl <
∑
l∈L

dl −
αDA

(L′ + 1)αRT

∑
l∈L′

dl <
∑
l∈L

dl. (28)

Substituting (28) into (26) yields a contradiction:

0 ≥ αRT − αDA

2αRT
dl +

1

2

∑
k∈L

dk −
1

2

∑
k∈L′

dDA∗k > 0, (29)

where the second inequality also uses αRT > αDA; recall Fig. 1. The preliminary assumption is rejected and therefore the
lemma is proved.
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