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Abstract—Integrated energy systems coordinate multiple en-
ergy flows to enhance energy efficiency and reduce costs. How-
ever, the uncertain and volatile availability of emerging renewable
energy generation poses significant challenges to traditional
scheduling paradigms of integrated energy systems. To address
this issue, we propose a robust sample-driven approach to ensure
the statistical feasibility of operational constraints – a notion
that is mild conservative and requires no prior knowledge
of randomness. We formulate the scheduling problem of an
integrated energy system as a statistically feasible mixed-integer
program with discrete control characteristics of combined heat
and power. To handle the non-linearities from chance constraints,
we use shape learning and shape calibration to construct an
uncertainty set with a statistical feasibility guarantee. The ap-
proach finally employs Benders decomposition to handle the
resulting deterministic linear model, offering a rigorous solution
to scheduling an integrated energy system under vast uncertainty.
We validate our analysis through extensive numerical studies.

Index Terms—Integrated energy system, renewable energy
generation, statistical feasibility, Benders decomposition

I. INTRODUCTION

Integrated energy systems coordinate multiple kinds of
energy between supply and demand [1]. Electricity, heat,
and natural gas can be flexibly converted, improving energy
efficiency and reducing costs. Renewable energy generation,
such as wind turbines and solar photovoltaics, is gaining pop-
ularity in integrated energy systems yet also brings along vast
uncertainty and intermittency [2]. This significantly challenges
traditional scheduling methods for integrated energy systems,
especially prediction-based deterministic ones that sufficed to
accommodate mild randomness [3].

There is a large literature on managing integrated en-
ergy systems under uncertainty. The main methodologies
include robust optimization, stochastic optimization, chance-
constrained optimization and distributionally robust optimiza-
tion [4]–[8]. In particular, [4] constructs a polyhedral un-
certainty set with predictions and uses a two-stage robust
optimization method to improve computational efficiency. [8]
further extends the two-stage model with Wasserstein distri-
butionally robust optimization. [5] develops a multi-scenario
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stochastic programming model to account for uncertainty
and generates scenarios of renewable output based on non-
parametric kernel density estimation. Similar approaches are
adopted in [6] and [7], yet multiple objectives and chance
constraints are respectively taken into account. However, most,
if not all, of the work along these lines uses either empirical
distributions or data samples to handle uncertainty, ignoring
the intrinsic discrepancy compared with underlying true dis-
tributions. This may lead to catastrophic consequences when
uncertainties jeopardize operational constraints.

Our work complements the literature by adopting an emerg-
ing notion of statistical feasibility, first proposed in [9], to
establish a novel bi-level chance-constrained model for in-
tegrated energy systems and propose a rigorous solution to
tackle the resulting scheduling problem. More specifically, in
modeling diverse components of an integrated energy system,
we introduce a bi-level form of chance constraints to account
for the uncertainty in operational constraints. Such an approach
provides a guarantee to satisfy operational constraints with
high probability based only on historical data samples. On
this basis, we formulate the scheduling problem of the inte-
grated energy system as a statistically feasible mixed-integer
program. To deal with the nonlinear and discrete nature of the
problem, we respectively resort to a constructed uncertainty
set and Benders decomposition, which jointly lead to an
efficient solution. Numerical studies further validate that our
approach maintains a good balance between performance and
conservativeness: it achieves a low cost close to a chance-
constrained benchmark while controlling the violation rate of
operational constraints under any specified requirement.

Our major contributions can be summarized as follows:
• A novel statistically feasible mixed-integer programming

formulation is proposed for scheduling an integrated
energy system. Without prior knowledge of uncertainty,
the formulation still allows the fulfillment of operational
constraints with high probability using history data sam-
ples, and meanwhile avoids being over-conservative.

• To facilitate efficient computation of a solution to the
scheduling problem, we propose to construct a sample-
driven uncertainty set such that the statistical feasibility
requirement is linearly inner-approximated. Then Bender



decomposition is employed to iteratively solve the result-
ing mixed-integer linear program with rigor.

II. PROBLEM FORMULATION

This section introduces the models of diverse components
of an integrated energy system and then formulates a sta-
tistically feasible scheduling problem under the uncertainty
of renewable energy generation. The framework of the inte-

Fig. 1. Energy flow of an integrated energy system.

grated energy system is shown in Fig. 1. Consider a discrete-
time horizon t ∈ {0,1,2, ...T}, where electricity and natural
gas from the supply side go through complicated energy
conversion to meet the demand of heat, cooling, and power
consumption.

1) Natural Gas and Electricity Supply: The integrated
energy system purchases natural gas to fuel Combined Heat
and Power (CHP) and a gas boiler:

V grid (t) =V CHP(t)+V GB(t). (1)

Here V grid(t) is the purchased natural gas. V CHP(t) and V GB(t)
are the natural gas consumption of the CHP and the gas boiler,
respectively.

Electricity comes from four sources. The first is the inter-
mittent renewable energy generation PR(t) captured by

PR(t) = P̂R(t)+ξ (t),

where P̂R(t) denotes a given prediction of renewable energy
generation while ξ (t) is a random variable representing the
corresponding prediction error. The second is the purchased
electricity from the grid, denoted by Pgrid(t). The third and
the last are the electricity outputs from the CHP and electrical
energy storage (EES), denoted by PCHP(t) and PEES(t), both
of which will be modeled shortly. Note that in the case of
negative PEES(t), the EES will consume electricity to charge,
thus becoming a load. In the meantime, there are an electric
boiler and an electric chiller that also consume PEB(t) and
PEC(t) amount of electricity, respectively. Then the remaining
electricity is all used to meet given inelastic power demand
Pload(t).

Sufficient supply of electricity is required to satisfy all
the demand. However, the uncertainty of renewable energy
generation makes it a challenging task: On the one hand,
we want to avoid conservative decisions to over-purchase
electricity with unnecessary costs. On the other hand, we
have to abide by operational constraints (at least with high
probability). We consider a setting where only a dataset D of
history renewable generation is available. To exploit such a
dataset, we use the notion of statistical feasibility to construct
a bi-level chance constraint for supply meeting demand as
follows [9]:

PD

(
Pξ (t)

(
PCHP(t)+Pgrid(t)+PEES(t)−PEC(t)−PEB(t)

+ξ (t)+ P̂R(t)≥ Pload(t)
)
≥ 1−δ

)
≥ 1− ε, (2)

where δ and ε are predetermined small constants. The inner
of (2) is a conventional chance constraint, while the outer
ensures that the inner chance constraint is satisfied with high
probability (w.r.t actual distribution) given the history data
(empirical distribution).

2) Heating System: Heat could be provided by the CHP, the
gas boiler, the electric boiler and (potentially) thermal energy
storage (TES), and is used to supply given inelastic heating
load, an absorption chiller and (potentially) TES.

The CHP could convert natural gas into both electricity and
heat [10]. The CHP is specified by a tuple of parameters.
PCHP, min and PCHP, max are the lower and upper bounds of
electricity generation, respectively. Let ηCHP

1 e (kWh/m3) and
ηCHP

2e (kWh) be the CHP electrical efficiency curve com-
ponents, and ηCHP

1 h (kWh/m3) and ηCHP
2 h (kWh) be the CHP

thermal efficiency curve components. Given such a specifi-
cation, the CHP outputs electricity PCHP(t) and heat QCHP(t)
according to

PCHP(t) =V CHP(t)ηCHP
1 e +η

CHP
2e ICHP(t), (3)

ICHP(t)PCHP,min ≤ PCHP(t)≤ ICHP(t)PCHP,max, (4)

QC H P
h (t) =V C H P(t)ηCHP

1 h +η
CHP
2 h ICHP(t), (5)

ICHP(t) ∈ {0,1}, (6)

where ICHP(t) is a binary variable denoting the CHP on/off
status.

The gas boiler also converts natural gas into heat. It is
specified by its thermal efficiency ηGB

h , the low-level heat
value of natural gas Lgas (9.78kWh/m3), and the lower/upper
bounds V GB,min/V GB,max of natural gas consumption. The
amount of heat converted, denoted as QGB

h (t), needs to satisfy

V GB(t) =
QGB

h (t)
ηGB

h ×Lgas
, (7)

V GB,min ≤V GB(t)≤V GB,max. (8)

The electric boiler converts electricity into heat. Its param-
eters include the thermal efficiency ηEB

h and the lower/upper



bounds PGB,min/PGB,max of electricity consumption. Then the
heat QEB

h (t) is generated according to

QEB
h (t) = η

EB
h PEB(t), (9)

PEB,min ≤ PEB(t)≤ PEB,max. (10)

All the heat generated has to sufficiently satisfy the aggre-
gate demand from the heating load Qload

h (t) and the absorption
chiller QAC

h (t), while the TES discharges or charges thermal
energy QTES(t) (positive for discharge and negative for charge)
as needed. This is captured by

QEB
h (t)+QCHP

h (t)−QAC
h (t)+QGB

h (t)+QTES(t)≥ Qload
h (t). (11)

3) Cooling System: The absorption chiller and the electric
chiller are both cooling devices but respectively use heat and
electricity. The absorption chiller operates according to

QAC
c (t) = η

AC
c QAC

h (t), (12)

QAC,min
h ≤ QAC

h (t)≤ QAC,max
h , (13)

where QAC
c (t) denotes the output cooling power, ηAC

c de-
notes the cooling efficiency, and QAC,min

h /QAC,max
h denote the

lower/upper bounds of heat consumption.
The electric chiller operates according to

QEC
c (t) = η

EC
c PEC(t), (14)

PEC,min ≤ PEC(t)≤ PEC,max, (15)

where QEC
c (t) denotes the output cooling power, ηEC

c de-
notes the cooling efficiency, and PEC,min

h /PEC,max
h denote the

lower/upper bounds of electricity consumption.
Finally, the aggregate cooling power needs to meet the

cooling load Qload
c (t):

QAC
c (t)+QEC

c (t)≥ Qload
c (t). (16)

4) Storage System: The EES and the TES are typical stor-
age subject to the following system dynamics and operational
constraints:

−PEES,max ≤ PEES(t)≤ PEES,max, (17)

SOCEES(t) = SOCEES(t −1)−η
EES
e PEES(t), (18)

SOCEES,min ≤ SOCEES(t)≤ SOCEES,max, (19)

−QTES,max ≤ QTES(t)≤ QTES,max, (20)

SOCTES(t) = SOCTES(t −1)−η
TES
h QTES(t), (21)

SOCTES,min ≤ SOCTES(t)≤ SOCTES,max. (22)

Here PEES,max /QTES,max are the power/heat rating. ηEES
e

and ηTES
h are the dissipation rates. SOCEES,min/SOCEES,max

and SOCTES,min/SOCTES,max are respectively the EES
and TES lower/upper bounds on their state-of-charge.
SOCEES(t)/SOCTES(t) represents the energy/heat stored in
the EES/TES. The energy injection and withdrawal limits
are given in (17) and (20). The EES and TES system
dynamics are described in (18) and (21), respectively, with
the states-of-charge bounded by (19) and (22).

Given the characteristics of all the components above, the
goal of the integrated energy system is to minimize the total

costs of purchasing electricity and natural gas from external
sources. Suppose ce(t) and cg(t) are respectively the prices of
electricity and natural gas power at time t. Renewable energy
generation is assumed free of charge. Let w be a shorthand
for all the variables above. Then we formulate the statistically
feasible scheduling problem as:

min
w

T

∑
t=1

(
ce(t)Pgrid(t)+ cg(t)V grid (t)

)
(23)

s.t. (1)− (22)

This problem is challenging in two ways: 1) the bi-level chance
constraint (2) is nonlinear and 2) the CHP involves discrete
decision variables.

III. ROBUST SAMPLE-DRIVEN APPROACH WITH BENDERS
DECOMPOSITION

In this section, we transfer the bi-level chance constraint into
a linear deterministic constraint by constructing an uncertainty
set U using the given dataset. Then we iteratively solve
the deterministic mixed-integer linear program with Benders
decomposition.

A. Uncertainty Set Construction

To solve the statistically feasible scheduling problem, we
first consider an approximation of the inner constraint of (2):

PCHP(t)+Pgrid(t)+PEES(t)−PEC(t)−PEB(t)+ξ (t)+ P̂R(t)

≥ Pload(t),∀ξ (t) ∈ U , (24)

where U is an uncertainty set. Obviously, ξ (t) ∈ U implies:

PCHP(t)+Pgrid(t)+PEES(t)−PEC(t)−PEB(t)+ξ (t)+ P̂R(t)

≥ Pload(t). (25)

We choose U that covers a 1−δ content of ξ (t), which means
that P(ξ (t) ∈ U )≥ 1−δ , then

P
(

PCHP(t)+Pgrid(t)+PEES(t)−PEC(t)−PEB(t)+ξ (t)

+P̂R(t)≥ Pload(t)
)
≥ P(ξ (t) ∈ U )≥ 1−δ . (26)

Assume that the given data set D = {ξ (1), ...,ξ (n)}, ξ (t) is
i.i.d. sampled from the actual probability distribution P. If we
can construct U =U (D) to be a 1−δ content set for P with
a confidence level 1− ε ,

PD (P(ξ (t) ∈ U )≥ 1−δ )≥ 1− ε, (27)

then according to [9, Lemma 2], any solution that satisfies (24)
with the particular U subject to (27) will also be feasible for
the inner constraint of (2) with probability 1− ε , i.e., (2) is
met.

To address the conservativeness, we carefully construct U
based on the following two criteria: 1) the volume of U should
be as small as possible and 2) P(ξ (t)∈U ) is not only greater
but close to 1−δ and PD (P(ξ (t) ∈ U )≥ 1−δ ) is not only
greater but close to 1− ε .

We shall construct an uncertainty set U that is a 1−δ con-
tent prediction error set with a confidence 1− ε . The smaller



the volume of U , the less conservative the approximation to
the chance constraint, but it may not satisfy the constraint
(2). We want to construct the smallest uncertainty set U such
that U covers 1− δ portion of the historical samples with
confidence 1−ε . This leads us to suggest a two-phase strategy.
We first partition D = {ξ (1), ...,ξ (n)} into two parts D1 and
D2 , with size of n1 and n2, respectively.

1) Shape learning: We set the shape U ={
(ξ (t)−µ)2

σ
≤ ρ, t ∈ {1,2, · · · ,T}

}
. µ and σ are respectively

the sample mean and sample variance of D1.
2) Shape calibration: ρ is the size of U . We use D2 to cal-

ibrate ρ to satisfy the statistical feasibility and get the smallest
size. We set a transformation map F(ξ (t)) = (ξ (t)−µ)2

σ
. Then

we transform all ξt ∈D2 by the transformation map F(·), and
sort F(ξ (t)) to {F(ξ (t))1 ≤ ...≤ F(ξ (t))n2}. We shall find
the sample index i∗, which satisfies:

i∗ = min

{
r :

r−1

∑
k=0

(
n2

k

)
(1−δ )k(δ )n2−k ≥ 1− ε

}
, (28)

where 1− (1− δ )n2 ≥ 1− ε . The value of ρ we seek equals
to F(ξ (t))i∗ . Then we get the shape U . We can demonstrate
the statistical guarantee following the same routine for [9, Th.
1 and Lemma 3].

We can furtherly turn (24) into a simpler and deterministic
constraint by using the shape parameters of the constructed
uncertainty set. Mathematically, PCHP(t)+Pgrid(t)+PEES(t)−
PEC(t)− PEB(t) + ξ (t) + P̂R(t) ≥ Pload(t),∀ξ (t) ∈ U , with
U characterized by { (ξ (t)−µ)2

σ
≤ ρ, t ∈ {1,2, · · · ,T}}, can be

transformed into the equivalent linear constraint:

Pload(t)− (PCHP(t)+Pgrid(t)+PEES(t)−PEC(t)−PEB(t)

+ P̂R(t))≤ µ −
√

ρσ . (29)

Then the statistically feasible scheduling problem (23) is
transformed into a deterministic mixed-integer linear program:

min
w

T

∑
t=1

(
ce(t)Pgrid(t)+ cg(t)V grid (t)

)
(P)

s.t. (1), (3)− (22), (29)

B. Benders Decomposition

Benders decomposition is an efficient method to solve P. We
decompose P into a master problem and a slave problem. The
master problem involves only integer variables and serves an
approximation for the original problem that always provides a
lower-bound objective value. Meanwhile, the slave problem
involves only continuous variables and serves as an inner
problem of the original problem with fixed integer variables.

Mathematically, P takes the following form:

min
x,y

Z(x,y) = f T y+ cT x (30a)

s.t. Ax ≤ b (30b)
Dx+Ey ≤ d (30c)
y ∈ S (30d)

Here x ∈ Rp stands for the continuous variables in P, while
y ∈ Zq is ICHP(t) for t ∈ {0,1,2, ...T} in P. y is constrained
in a feasible set S ⊂ {0,1}q. c ∈ Rp and f ∈ Rq respectively
denote the cost vectors for x and y, where f is a zero vector.
The matrix A ∈Ru×p and the vector b ∈Ru specify the affine
inequality constraints on x. Similarly, D ∈Rv×p, E ∈Rv×q and
d ∈ Rv specify the affine inequality constraints that couple x
and y.

For notational convenience, we define

Ω := {(x,y) : (30b), (30c), (30d)}

to be the set of feasible region of the MILP (30), which is
assumed to be non-empty. Then we denote its optimal cost as:

Z∗ = min
(x,y)∈Ω

Z(x,y) ,

which is assumed to be finite and achieved at an optimal (not
necessarily unique) solution.

The master problem is designed to take the following form:
Master Problem

min
y,Ẑ

Ẑ (31a)

s.t. Feasible Cuts (31b)
Infeasible Cuts (31c)
y ∈ S (31d)

where Ẑ ∈ R is a scalar variable that serves as a proxy for
the original cost function Z(x,y). It is connected with y via
the feasible cuts, which are a series of lower-bound constraints
for Ẑ. The infeasible cuts are constraints on y to exclude those
choices of values that will render the slave problem infeasible,
as we will see shortly.

The slave problem takes care of all the components related
to the continuous variables in the MILP (30), treating the
integer variable y as given, i.e., y = y(k) based on the latest
output of the master problem. In particular, the slave problem
at the k-th iteration takes the following form:
Slave Problem

min
x

cT x (32a)

s.t. Ax ≤ b (32b)
Dx ≤ d −Ey(k) (32c)

where the constant f T y(k) in the objective function and the
feasible set S of y are irrelevant and removed, given the fixed
value of y(k).

We consider the first possible case for the optimal solution
to the slave problem(32). The dual slave problem is given as:

max
λ ,µ

−bT
λ +(Ey(k)−d)T

µ (33a)

s.t. c+AT
λ +DT

µ = 0 (33b)
λ ≥ 0, µ ≥ 0 (33c)

where λ ∈ Ru and µ ∈ Rv are dual variables for (32b) and
(32c), respectively.



The optimal value of the dual slave problem (33) achieved
at (λ (k),µ(k)) coincides with the optimal cost of the slave
problem (32) and provides an upper bound of Z∗, i.e.,

Z̄(k) := f T y(k)−bT
λ (k)+(Ey(k)−d)T

µ(k)≥ Z∗ . (34)

Each time we obtain (λ (k),µ(k)) from the dual slave
problem (33), we add a feasible cut as follows in the master
problem (31):
Feasible Cut

Ẑ ≥ f T y−bT
λ (k)+(Ey−d)T

µ(k) . (35)

Now we consider the second possible case for the optimal
solution to the slave problem (32), i.e., (32c) is infeasible with
the current choice of y(k). To this end, an infeasible cut is
developed:
Infeasible Cut

0 ≥−bT
λ (k)+(Ey−d)T

µ(k) . (36)

Feasible cut and infeasible cut provide feedback for the
master problem by adding cutting-plane constraints, or simply
“cuts”, that drive the master problem solution closer to an
optimal solution to the mixed-integer linear program. Benders
decomposition keeps solving the two problems in an alternat-
ing fashion until it converges to optimum. More details about
the whole solution are provided in Appendix B. We summarize
the proposed algorithm in Appendix A.

IV. NUMERICAL STUDIES

This section presents numerical studies designed to validate
the efficiency of our approach. Electricity and natural gas
prices come from [11]. The loads of electricity, heating,
and cooling, as well as the actual and predicted amount
of renewable energy generation are all sourced from [12].
The parameters of the integrated energy system are adapted
from [4].

We will use the total purchase costs and the violation rate of
the constraint (2) (averaged over 1000 experiment runs) as the
main metrics. We compare our robust sample-driven approach
P with four benchmarks:
– Offline Optimum (OO) in hindsight: an offline version
of the scheduling problem (23) with actual prediction error
realizations. This is set as the optimal benchmark.
– Prediction-based Optimization (PO): a reformulation of
the scheduling problem (23) using expected prediction errors.
– Chance-constrained Optimization (CC): a reformulation
of the scheduling problem (23) using the classic chance-
constraint that assumes Gaussian distributed prediction errors.
– Robust Optimization (RO): a reformulation of the schedul-
ing problem (23) using the classic RO method based on history
prediction data.

Fig. 2 illustrates how the total costs of different methods
change with varying sample sizes when δ = 0.05 and ε = 0.05.
The optimal cost generated from OO 30507($). The perfor-
mance trends of the three methods are different. The total
cost of P is lower than that of RO but higher than and closer
to the total cost of CC as the sample size increases. The

total cost of CC does not change much with the increasing
sample size, compared to the total cost of RO and P. Fig. 3
illustrates how the violation rates of different methods change
with the increasing sample size. The violation rate of CC is
much greater than 0.05. RO maintains a rate of 0 but incurs a
higher cost than P and CC. P exploits the flexibility of the bi-
level chance constraint, with a violation rate below 0.05 and
decreasing costs as the sample size grows.

Fig. 2. Impact of sample size on costs.

Fig. 3. Impact of sample size on constraint violation rate.

Table I shows the performance of P and benchmarks when
n1 = 3640 and n2 = 1560. The relative cost increment is the
ratio of the difference between the actual cost and the optimal
cost to the optimal cost. δ

′
means the ratio of the number

of violated constraints to the length of T . PO has a negative
relative cost increment, indicating a lower cost compared to
the optimal cost, but the violation rate significantly exceeds
0.05. P achieves a low cost close to CC and δ ′ is below and
closest to the desired 0.05.

According to Fig. 4, the grid is the primary source of
electricity, supplemented by renewable energy, the EES, and
the CHP. The EES discharges when electricity prices are high
and charges when prices are low. Fig. 5 shows that most
natural gas is used for electricity generation by the CHP
because converting natural gas to electricity through the CHP
is more cost effective than purchasing the equivalent amount
of electricity. Fig. 6 shows that the gas boiler is the primary
source of heat because it is more efficient in converting natural
gas to heat compared to the CHP. In Fig. 7, the cooling supply
mainly comes from the absorption chiller. The system tends to
convert heat rather than electricity to cooling due to the low
natural gas price.



TABLE I
COMPARISON ACROSS DIFFERENT METHODS

Method Relative Cost Increment Constraint Violation Rate
PO −0.721% 10%
P 3.334% 4.25%

CC 3.101% 12.5%
RO 20.253% 0

Fig. 4. Electricity flow.

Fig. 5. Natural gas flow.

Fig. 6. Heat flow.

Fig. 7. Cooling flow.

V. CONCLUSION

In this paper, we introduce a novel statistically feasible
mixed-integer programming formulation for scheduling an
integrated energy system. To address the problem’s nonlinear
and discrete characteristics, we utilize a constructed uncer-
tainty set and Benders decomposition. Our approach effec-
tively manages the uncertainty of renewable energy generation
using historical data, ensuring high probability adherence to
the constraints while avoiding over-conservatism. Extensive
numerical studies validate that the approach achieves a low
cost and a violation rate close to the desired 0.05, compared
to other benchmarks. Future work could explore the extension
of this method to more uncertainties, further enhancing its
applicability.
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APPENDIX

A. Complete Algorithm Flow

We detail the procedure for constructing the uncertainty set
and solving P using Benders decomposition as follows:

Algorithm 1 Robust Sample-Driven Solution with Benders
Decomposition

Input: {PR, P̂R},δ ,ε,n1,n2;
Output: solution w with statistical feasible guarantee;
Uncertainty Set Construction:

1: Divide dataset D into two groups, denoted by D1 and D2
respectively with sizes n1 and n2;

2: Compute parameters µ and σ based on D1;
3: Construct the transformation map F(ξ (t)) = (ξ (t)−µ)2

σ
;

4: Calculate F(ξ (t)) for all ξ (t) ∈ D2;
5: Sort F(ξ (t)) to {F(ξ (t))1 ≤ ...≤ F(ξ (t))n2};
6: Calculate the index i∗ by (28);
7: Denote ρ = F(ξ (t))i∗ and calibrate the uncertainty set as

F(ξ (t))≤ ρ;
Optimization:

1: For t ∈ [0,T ], transform Eq. (24) into Eq. (29) using
{µ,σ ,ρ};

2: Solve P to get the solution w with Benders decomposition.

B. Benders Decomposition for P
We decompose P into a master problem and a slave problem

as follows:
Master Problem

min
Ẑ,ICHP(t)

Ẑ

s.t. Feasible Cuts
Infeasible Cuts

ICHP(t) ∈ {0,1}q

Slave Problem

min
T

∑
t=1

(
ce(t)Pgrid(t)+ cg(t)V grid (t)

)
s.t. PCHP(t)−VCHP(t)ηCHP

1e = η
CHP
2e ICHP,k(t)

PCHP(t)≤ ICHP,k(t)PCHP,max

−PCHP(t)≤−ICHP,k(t)PCHP,min

QCHP(t)−VCHP(t)ηCHP
1h = η

CHP
2h ICHP,k(t)

(1), (7)− (22), (29)

By linear transformation, the slave problem can be transformed
into (32). y(k) stands for the value of integer variables from
the master problem and x stands for continuous variables.

We consider the first possible case for the optimal solution
to the slave problem(32). The dual slave problem is given as
(33).

The key to the development of a feasible cut is the obser-
vation that the feasible region of the dual slave problem (33)

is independent of y(k). In other words, the polyhedron defined
by (33b) and (33c) is fixed regardless of the choice of y(k)∈ S
(even if it leads to an infeasible slave problem). Let Π be the
set of extreme points of this polyhedron. Then the dual slave
problem (33) is equivalent to

max
(λ ,µ)∈Π

−bT
λ +(Ey(k)−d)T

µ

since there is always an extreme-point optimizer.
In particular, the above dual analysis on the slave problem

(32) implies that the original mixed-integer linear program (30)
can also equivalently boil down to

min
y∈S

{ f T y+ max
(λ ,µ)∈Π

{−bT
λ +(Ey−d)T

µ}} . (37)

The challenge is that the set Π of extreme points is unknown
and can be computationally expensive to fully characterize.
Instead of taking into account all the extreme points in Π,
we could evaluate the inner y-dependent function of (37)
at only a subset of extreme points. This naturally leads to
an underestimate for the cost of each choice of y. Then
the minimum underestimated cost is always a lower bound
of Z∗. This is exactly the rationale underlying the master
problem (31). In particular, each feasible cut captures the cost
associated with y provided that the inner y-dependent function
of (37) is evaluated at one extreme point and requires that Ẑ in
the master problem (31) should be no less than this cost. The
intersection of all such cuts amounts to the maximum over the
current subset of extreme points.

Each time we obtain (λ (k),µ(k)) from the dual slave
problem (33), we add a feasible cut (35) in the master problem
(31).

Now we consider the second possible case for the optimal
solution to the slave problem (32), i.e., (32c) is infeasible
with the current choice of y(k). To this end, an infeasible cut
is developed out of a variant of the slave problem (32) - a
feasibility check problem.
Feasibility Check Problem

min
κ,ω,x

1T
κ +1T

ω (38a)

s.t. Ax ≤ b+κ (38b)
Dx ≤ d −Ey(k)+ω (38c)
κ ≥ 0, ω ≥ 0 (38d)

where we introduce non-negative slack variables κ and ω to
relax the constraints (32b) and (32c) of the slave problem (32)
at the minimum relaxation budget/cost. Obviously, if the slave
problem (32) is feasible, the optimal value of the feasibility
check problem (38) is bound to be zero. Now as we consider
the case where the slave problem (32) is infeasible, we will
have

1T
κ(k)+1T

ω(k)> 0 , (39)

where κ(k) and ω(k) are the optimal solutions to the current
feasibility check problem (38) at the k-th iteration.

It can be dualized into the following form (with abuse of λ

and µ as the dual variables for (38b) and (38c), respectively):



Dual Feasibility Check Problem

max
λ ,µ

−bT
λ +(Ey(k)−d)T

µ (40a)

s.t. AT
λ +DT

µ = 0 (40b)
0 ≤ λ ≤ 1 (40c)
0 ≤ µ ≤ 1 (40d)

We abuse again (λ (k),µ(k)) to denote a bounded optimal
solution to the above problem, which is guaranteed to exist
by strong duality and satisfy

1T
κ(k)+1T

ω(k) =−bT
λ (k)+(Ey(k)−d)T

µ(k)> 0

Based on the above observation, now we are ready to
develop the infeasible cut as (36).

Proposition 1. Given an optimal solution (x∗,y∗) to the MILP
(30), it satisfies all the infeasible cuts (36) in the master
problem (31).

Proof. Since the slave problem (32) given y∗ has to be
feasible, the optimal values of the feasible check problem
(38) and its dual (40) with y(k) = y∗ coincide at 0. Then
Proposition 1 immediately follows from

0 = max
(λ ,µ):(40b)−(40d)

−bT
λ +(Ey∗−d)T

µ

≥ −bT
λ (k)+(Ey∗−d)T

µ(k)

where (λ (k),µ(k)) is always a feasible point in the fixed
region (40b)-(40d) at any k-th iteration where an infeasible
cut is generated.

Proposition 2. Benders decomposition converges to an opti-
mal solution to the MILP (30) in finite iterations.

Proof. The proof boils down to showing the following two
arguments:

• The lower bound Ẑ(k) of Z∗ is monotonically non-
decreasing in k;

• The number of cuts that can be generated is finite;
• Once y(k) has been picked at any previous iteration l,

l = k − 1,k − 2, . . . ,1, the algorithm has converged. In
particular, the lower bound converges to the optimal cost
of the MILP (30), i.e., Ẑ(k) = Z∗.

Recall that (y(k), Ẑ(k)) is an optimal solution to the master
problem (31) at the k-th iteration.

The first argument is straightforward as we add an extra
cut at each iteration to the master problem (31). The second
argument follows from the fact that (i) the number of feasible
cuts is upper bounded by the number of extreme points in
Π; (ii) the number of infeasible cuts is upper bounded by the
number of discrete choices for y in S. Therefore, the total
number of cuts cannot exceed |Π|+ |S|, which is finite.

In terms of the third argument, suppose at the k-th iteration
we run into y(k) that has appeared before. Such a y(k) must
lead to a feasible slave problem; otherwise, it would have been
excluded from the feasible region of the master problem (31)
by an infeasible cut.

Suppose it corresponds to an extreme-point optimal solution
(λ (k),µ(k)) that has been used to add a feasible cut at the
previous iteration where y(k) was picked. Since this is a
feasible solution to (37), we have an upper bound of Z∗:

Z∗ ≤ f T y(k)−bT
λ (k)+(Ey(k)−d)T

µ(k) .

Meanwhile, y(k) is optimal with respect to the master problem
again at the k-th iteration. It achieves the maximum value
of the inner y-dependent function of (37) at one particular
extreme point in the current subset of Π, denoted by Π(k),
that contains (λ (k),µ(k)). Therefore, we have the following
lower bounds of Z∗:

Z∗ ≥ f T y(k)+ max
(λ ,µ)∈Π(k)

{−bT
λ +(Ey(k)−d)T

µ}

≥ f T y(k)−bT
λ (k)+(Ey(k)−d)T

µ(k) .

Therefore, we arrive at a lower bound that equals an upper
bound which enforces

Z∗ = f T y(k)−bT
λ (k)+(Ey(k)−d)T

µ(k) = Ẑ(k) .

Combining the three arguments completes the proof of
Proposition 2.


