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Abstract—Integrated energy systems coordinate multiple en-
ergy flows to enhance energy efficiency and reduce costs. How-
ever, the uncertain and volatile availability of emerging renewable
energy generation poses significant challenges to traditional
scheduling paradigms of integrated energy systems. To address
this issue, we propose a robust sample-driven approach to ensure
the statistical feasibility of operational constraints — a notion
that is mild conservative and requires no prior knowledge
of randomness. We formulate the scheduling problem of an
integrated energy system as a statistically feasible mixed-integer
program with discrete control characteristics of combined heat
and power. To handle the non-linearities from chance constraints,
we use shape learning and shape calibration to construct an
uncertainty set with a statistical feasibility guarantee. The ap-
proach finally employs Benders decomposition to handle the
resulting deterministic linear model, offering a rigorous solution
to scheduling an integrated energy system under vast uncertainty.
We validate our analysis through extensive numerical studies.

Index Terms—Integrated energy system, renewable energy
generation, statistical feasibility, Benders decomposition

I. INTRODUCTION

Integrated energy systems coordinate multiple kinds of
energy between supply and demand [1]. Electricity, heat,
and natural gas can be flexibly converted, improving energy
efficiency and reducing costs. Renewable energy generation,
such as wind turbines and solar photovoltaics, is gaining pop-
ularity in integrated energy systems yet also brings along vast
uncertainty and intermittency [2]. This significantly challenges
traditional scheduling methods for integrated energy systems,
especially prediction-based deterministic ones that sufficed to
accommodate mild randomness [3].

There is a large literature on managing integrated en-
ergy systems under uncertainty. The main methodologies
include robust optimization, stochastic optimization, chance-
constrained optimization and distributionally robust optimiza-
tion [4]-[8]. In particular, [4] constructs a polyhedral un-
certainty set with predictions and uses a two-stage robust
optimization method to improve computational efficiency. [8]
further extends the two-stage model with Wasserstein distri-
butionally robust optimization. [5] develops a multi-scenario

This work was supported by NSFC through grants 72431001, 72201007,
723B1001, T2121002, and 72131001.

979-8-3315-2352-7/24/$31.00 ©2024 IEEE

E. Liu
the School of Electrical
and Mechanical Engineering
Heze University
Heze, China
gaoyi2313@gmail.com

Pengcheng You
the Department of Industrial Engineering
and Management, College of Engineering
Peking University
Beijing, China
pcyou@pku.edu.cn

stochastic programming model to account for uncertainty
and generates scenarios of renewable output based on non-
parametric kernel density estimation. Similar approaches are
adopted in [6] and [7], yet multiple objectives and chance
constraints are respectively taken into account. However, most,
if not all, of the work along these lines uses either empirical
distributions or data samples to handle uncertainty, ignoring
the intrinsic discrepancy compared with underlying true dis-
tributions. This may lead to catastrophic consequences when
uncertainties jeopardize operational constraints.

Our work complements the literature by adopting an emerg-
ing notion of statistical feasibility, first proposed in [9], to
establish a novel bi-level chance-constrained model for in-
tegrated energy systems and propose a rigorous solution to
tackle the resulting scheduling problem. More specifically, in
modeling diverse components of an integrated energy system,
we introduce a bi-level form of chance constraints to account
for the uncertainty in operational constraints. Such an approach
provides a guarantee to satisfy operational constraints with
high probability based only on historical data samples. On
this basis, we formulate the scheduling problem of the inte-
grated energy system as a statistically feasible mixed-integer
program. To deal with the nonlinear and discrete nature of the
problem, we respectively resort to a constructed uncertainty
set and Benders decomposition, which jointly lead to an
efficient solution. Numerical studies further validate that our
approach maintains a good balance between performance and
conservativeness: it achieves a low cost close to a chance-
constrained benchmark while controlling the violation rate of
operational constraints under any specified requirement.

Our major contributions can be summarized as follows:

« A novel statistically feasible mixed-integer programming
formulation is proposed for scheduling an integrated
energy system. Without prior knowledge of uncertainty,
the formulation still allows the fulfillment of operational
constraints with high probability using history data sam-
ples, and meanwhile avoids being over-conservative.

o To facilitate efficient computation of a solution to the
scheduling problem, we propose to construct a sample-
driven uncertainty set such that the statistical feasibility
requirement is linearly inner-approximated. Then Bender
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decomposition is employed to iteratively solve the result-
ing mixed-integer linear program with rigor.
II. PROBLEM FORMULATION

This section introduces the models of diverse components
of an integrated energy system and then formulates a sta-
tistically feasible scheduling problem under the uncertainty
of renewable energy generation. The framework of the inte-
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Fig. 1. Energy flow of an integrated energy system.

grated energy system is shown in Fig. 1. Consider a discrete-
time horizon ¢ € {0,1,2,...T'}, where electricity and natural
gas from the supply side go through complicated energy
conversion to meet the demand of heat, cooling, and power
consumption.

1) Natural Gas and Electricity Supply: The integrated
energy system purchases natural gas to fuel Combined Heat
and Power (CHP) and a gas boiler:

yerid (t) = VCHP(Z) —|—VGB(I). (D)

Here V&14(t) is the purchased natural gas. VCHP (¢) and VOB (r)
are the natural gas consumption of the CHP and the gas boiler,
respectively.

Electricity comes from four sources. The first is the inter-
mittent renewable energy generation PR(¢) captured by

PR(1) = PR (1) +& (1),

where PR(t) denotes a given prediction of renewable energy
generation while £(r) is a random variable representing the
corresponding prediction error. The second is the purchased
electricity from the grid, denoted by P24(¢). The third and
the last are the electricity outputs from the CHP and electrical
energy storage (EES), denoted by P°HP(z) and PEFS (), both
of which will be modeled shortly. Note that in the case of
negative PEES(¢), the EES will consume electricity to charge,
thus becoming a load. In the meantime, there are an electric
boiler and an electric chiller that also consume PEB(¢) and
PEC(¢) amount of electricity, respectively. Then the remaining
electricity is all used to meet given inelastic power demand
Pload (l‘)

Sufficient supply of electricity is required to satisfy all
the demand. However, the uncertainty of renewable energy
generation makes it a challenging task: On the one hand,
we want to avoid conservative decisions to over-purchase
electricity with unnecessary costs. On the other hand, we
have to abide by operational constraints (at least with high
probability). We consider a setting where only a dataset & of
history renewable generation is available. To exploit such a
dataset, we use the notion of statistical feasibility to construct
a bi-level chance constraint for supply meeting demand as
follows [9]:

Poy (Pegey (PP (1) 4+ PE(r) 4+ PPES (1) — PEC (1) — PR(1)

FE() +PR() ZPload(t)) > 1—5) >1¢, 2)

where J and € are predetermined small constants. The inner
of (2) is a conventional chance constraint, while the outer
ensures that the inner chance constraint is satisfied with high
probability (w.r.t actual distribution) given the history data
(empirical distribution).

2) Heating System: Heat could be provided by the CHP, the
gas boiler, the electric boiler and (potentially) thermal energy
storage (TES), and is used to supply given inelastic heating
load, an absorption chiller and (potentially) TES.

The CHP could convert natural gas into both electricity and
heat [10]. The CHP is specified by a tuple of parameters.
PCHEmin anq pCHP.max are the lower and upper bounds of
electricity generation, respectively. Let NP (kWh/m?) and
nSHP(kWh) be the CHP electrical efficiency curve com-
ponents, and NP (kWh/m?) and n$HP(kWh) be the CHP
thermal efficiency curve components. Given such a specifi-
cation, the CHP outputs electricity P°HP(¢) and heat Q€HP (1)
according to

PCHP (1) = Y CHP (1) n CHP | CHP [CHP (/) 3)
JCHP () pCHPin < pCHP (/)  JCHP (1) pCHPmax @)
OF M (1) = VeI (T £ ST, )
ICHP(t) €{0,1}, (6)

where IHP(¢) is a binary variable denoting the CHP on/off
status.

The gas boiler also converts natural gas into heat. It is
specified by its thermal efficiency nEB, the low-level heat
value of natural gas Ly (9.78kWh/ m>), and the lower/upper
bounds VEB:min/yGBmax of natyral gas consumption. The
amount of heat converted, denoted as QEB (1), needs to satisfy

QGB t

vergy = S )
Ny X Lgas

VGB,min S VGB (t) S VGB,max. (8)

The electric boiler converts electricity into heat. Its param-
eters include the thermal efficiency nffB and the lower/upper
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bounds POB-min/pGB.max of electricity consumption. Then the
heat QFB(t) is generated according to

01" (1) = m° P (), ©)
PEB,min S PEB(t) S PEB,max. (10)

All the heat generated has to sufficiently satisfy the aggre-

gate demand from the heating load Q1°*() and the absorption
chiller QA€(¢), while the TES discharges or charges thermal
energy Q13 (z) (positive for discharge and negative for charge)

as needed. This is captured by
0" (1) + 07 (1) - R (1) + Q7P () + 0" (1) = (). (D)

3) Cooling System: The absorption chiller and the electric
chiller are both cooling devices but respectively use heat and
electricity. The absorption chiller operates according to

cC(r) = i),
QﬁC,mm < Qﬁc(l‘) < Qﬁc,max’

(12)
(13)
where QAC(t) denotes the output cooling power, /€ de-
notes the cooling efficiency, and Q2 <™"/QR“™* denote the

lower/upper bounds of heat consumption.
The electric chiller operates according to

0L (1) = ng P (1),
PEC,min < PEC(I) < PEC,max

(14)
15)

where QF€(r) denotes the output cooling power, nE¢ de-
notes the cooling efficiency, and Pf C’mm/Plf‘ Cmax Jenote the
lower/upper bounds of electricity consumption.

Finally, the aggregate cooling power needs to meet the

cooling load Q!3d(¢):
08€(1) + 0 (1) > 01 ().

4) Storage System: The EES and the TES are typical stor-
age subject to the following system dynamics and operational
constraints:

(16)

7PEES,max S PEES (t) S PEES,max, (17)
SOCEES (1) = SOCEES (1 — 1) — nEESPEES (1), (18)
SOCEES,min S SOCEES (t) S SOCEES’maX, (19)
_ QTES,max < QTES (1) < QTES,max) (20)
SOC™ (1) =S0C™ (1 = 1) =y ™0™ (1), @21
SOCTESmin < §OCTES (1) < SOCTESmax, (22)

EES,max TES,max EES
P 10 E

Here are the power/heat rating. 7
and 1S are the dissipation rates. SOCEES-min/gQCEES.max
and SOCTESmin/gOCTESmax  are  respectively the EES
and TES lower/upper bounds on their state-of-charge.
SOCEES (1)/SOCTES (t) represents the energy/heat stored in
the EES/TES. The energy injection and withdrawal limits
are given in (17) and (20). The EES and TES system
dynamics are described in (18) and (21), respectively, with
the states-of-charge bounded by (19) and (22).

Given the characteristics of all the components above, the
goal of the integrated energy system is to minimize the total

costs of purchasing electricity and natural gas from external
sources. Suppose ¢, () and c¢,(t) are respectively the prices of
electricity and natural gas power at time ¢. Renewable energy
generation is assumed free of charge. Let w be a shorthand
for all the variables above. Then we formulate the statistically
feasible scheduling problem as:

T
min Y (ce(t)Pg“d (1) + cg(r) Ve (;)) (23)
v =1
st. ()—(22)

This problem is challenging in two ways: 1) the bi-level chance
constraint (2) is nonlinear and 2) the CHP involves discrete
decision variables.

III. ROBUST SAMPLE-DRIVEN APPROACH WITH BENDERS
DECOMPOSITION

In this section, we transfer the bi-level chance constraint into
a linear deterministic constraint by constructing an uncertainty
set % using the given dataset. Then we iteratively solve
the deterministic mixed-integer linear program with Benders
decomposition.

A. Uncertainty Set Construction

To solve the statistically feasible scheduling problem, we
first consider an approximation of the inner constraint of (2):

PCHP (1) 4 Pid () 4 PEES (1) — PEC (1) — PEB (1) + £ (1) + PR(r)
> PO (1), VE(r) e, (24)
where % is an uncertainty set. Obviously, &(z) € % implies:
PE(1) + PE (1) + PPPS (1) — PPC(1) — PPP () + & (1) + PR(1)
> pload(p), (25)

We choose % that covers a 1 — 8 content of &(¢), which means
that P(E(r) € ) > 1, then

P (pCHP(t) + PE(1) + PPES (1) — PR (1) — PRB (1) + £ (1)

+PR(1) > () > P(E( e %) > 1-6. (26)

Assume that the given data set 2 = {£(1),...,&(n)}, &(¢) is
ii.d. sampled from the actual probability distribution P. If we
can construct =% (2) to be a 1 — § content set for P with
a confidence level 1 — ¢,

Py(P(E(t) e %) >1-8)>1~¢, 27)

then according to [9, Lemma 2], any solution that satisfies (24)
with the particular %/ subject to (27) will also be feasible for
the inner constraint of (2) with probability 1 —g, i.e., (2) is
met.

To address the conservativeness, we carefully construct %
based on the following two criteria: 1) the volume of % should
be as small as possible and 2) P(&(¢) € %) is not only greater
but close to 1 — 8 and Py (P(E(r) € ) > 1—8) is not only
greater but close to 1 —&.

We shall construct an uncertainty set %/ thatis a 1 — 0 con-
tent prediction error set with a confidence 1 — €. The smaller
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the volume of %/, the less conservative the approximation to
the chance constraint, but it may not satisfy the constraint
(2). We want to construct the smallest uncertainty set %/ such
that % covers 1 — § portion of the historical samples with
confidence 1 — €. This leads us to suggest a two-phase strategy.
We first partition 2 = {£(1),...,§(n)} into two parts 2, and
2, , with size of n; and ny, respectively.

1) Shape learning: We set the shape % =
{% <p,te{l,2,-- ,T}}. u and o are respectively
the sample mean and sample variance of ;.

2) Shape calibration: p is the size of 7% . We use %, to cal-
ibrate p to satisfy the statistical feasibility and get the smallest
size. We set a transformation map F(&(z)) = M. Then
we transform all & € %, by the transformation map F(-), and
sort F(§(1)) to {F(E(t))1 <...<F(&(t))n,}. We shall find
the sample index i*, which satisfies:

-k : = l’l2> k ny—k
iF =min< r: 1-8)(6)> " >1—¢,, 28
{ X (p)a-arert= } 28)
where 1 — (1 —8)" > 1 —¢€. The value of p we seek equals
to F(&(t))+. Then we get the shape % . We can demonstrate
the statistical guarantee following the same routine for [9, Th.
1 and Lemma 3].

We can furtherly turn (24) into a simpler and deterministic
constraint by using the shape parameters of the constructed
uncertainty set. Mathematically, PCHP (1) + Perid(r) 4- PEES (1) —
PEC(t) — PEB(1) + E(1) + PRgt) > Pload(r) VE(t) € %, with
% characterized by {(g(t)%“) <p,te{l,2,---,T}}, can be
transformed into the equivalent linear constraint:

Pload(t) _ (PCHP(Z‘) +Pgrid(t) _|_PEES (l‘) _PEC (l‘) _PEB (t)

+PR(1)) < u—./po. (29)
Then the statistically feasible scheduling problem (23) is
transformed into a deterministic mixed-integer linear program:

T . .
Y (celtyPEr(e) + c(r)vE 1))
t=1

st (1),3)—(22),(29)

(P)

min
w

B. Benders Decomposition

Benders decomposition is an efficient method to solve P. We
decompose P into a master problem and a slave problem. The
master problem involves only integer variables and serves an
approximation for the original problem that always provides a
lower-bound objective value. Meanwhile, the slave problem
involves only continuous variables and serves as an inner
problem of the original problem with fixed integer variables.

Mathematically, P takes the following form:

min  Z(x,y) = fly+c'x (30a)
xy

s.t. Ax<b (30b)

Dx+Ey<d (30¢)

yES (30d)

Here x € R? stands for the continuous variables in P, while
y € Z9 is I°f'P(¢) for t € {0,1,2,...T} in P. y is constrained
in a feasible set S C {0,1}9. ¢ € R? and f € RY respectively
denote the cost vectors for x and y, where f is a zero vector.
The matrix A € R**? and the vector b € R” specify the affine
inequality constraints on x. Similarly, D € R"*?, E € R"*? and
d € RY specify the affine inequality constraints that couple x
and y.
For notational convenience, we define

Q= {(x,y) : (30b),(30c), (30d)}

to be the set of feasible region of the MILP (30), which is
assumed to be non-empty. Then we denote its optimal cost as:
Z*= min Z(x,y) ,
(r.y)eQ &)
which is assumed to be finite and achieved at an optimal (not
necessarily unique) solution.

The master problem is designed to take the following form:
Master Problem

min Z (31a)
.z

s.t. Feasible Cuts (31b)

Infeasible Cuts (3lc)

yES (31d)

where Z € R is a scalar variable that serves as a proxy for
the original cost function Z(x,y). It is connected with y via
the feasible cuts, which are a series of lower-bound constraints
for Z. The infeasible cuts are constraints on y to exclude those
choices of values that will render the slave problem infeasible,
as we will see shortly.

The slave problem takes care of all the components related
to the continuous variables in the MILP (30), treating the
integer variable y as given, i.e., y = y(k) based on the latest
output of the master problem. In particular, the slave problem
at the k-th iteration takes the following form:

Slave Problem

min  ¢’x (32a)
st. Ax<b (32b)
Dx < d— Ey(k) (32¢)

where the constant f7y(k) in the objective function and the
feasible set S of y are irrelevant and removed, given the fixed
value of y(k).

We consider the first possible case for the optimal solution
to the slave problem(32). The dual slave problem is given as:

max —b'A+(Ey(k)—d) (33a)
st. c+ATA+DTu=0 (33b)
A>0, u>0 (33¢)

where A € R* and u € RY are dual variables for (32b) and
(32c), respectively.
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The optimal value of the dual slave problem (33) achieved
at (A(k),u(k)) coincides with the optimal cost of the slave
problem (32) and provides an upper bound of Z*, i.e.,

Z(k) := fTy(k) = b" A (k) + (Ey(k) —d) (k) > 2" . (34)

Each time we obtain (A(k),u(k)) from the dual slave
problem (33), we add a feasible cut as follows in the master
problem (31):

Feasible Cut

Z>fy=b"A(k) + (Ey—d)" p(k) . (39)

Now we consider the second possible case for the optimal
solution to the slave problem (32), i.e., (32¢c) is infeasible with
the current choice of y(k). To this end, an infeasible cut is
developed:

Infeasible Cut

0> —b"A(k)+ (Ey—d)  u(k) . (36)

Feasible cut and infeasible cut provide feedback for the
master problem by adding cutting-plane constraints, or simply
“cuts”, that drive the master problem solution closer to an
optimal solution to the mixed-integer linear program. Benders
decomposition keeps solving the two problems in an alternat-
ing fashion until it converges to optimum. More details about
the whole solution are provided in the technical report [11].

IV. NUMERICAL STUDIES

This section presents numerical studies designed to validate
the efficiency of our approach. Electricity and natural gas
prices come from [12]. The loads of electricity, heating,
and cooling, as well as the actual and predicted amount
of renewable energy generation are all sourced from [13].
The parameters of the integrated energy system are adapted
from [4].

We compare our robust sample-driven approach P with four
benchmarks:

— Offline Optimum (OQO) in hindsight: an offline version
of the scheduling problem (23) with actual prediction error
realizations. This is set as the optimal benchmark.

— Prediction-based Optimization (PO): a reformulation of
the scheduling problem (23) using expected prediction errors.
— Chance-constrained Optimization (CC): a reformulation
of the scheduling problem (23) using the classic chance-
constraint that assumes Gaussian distributed prediction errors.
— Robust Optimization (RO): a reformulation of the schedul-
ing problem (23) using the classic RO method based on history
prediction data.

We will use the total purchase costs and the violation rate of
the constraint (2) (averaged over 1000 experiment runs) as the
main metrics.

Fig. 2 illustrates how the total costs of different methods
change with varying sample sizes when & = 0.05 and € = 0.05.
The optimal cost generated from OO 30507($). The perfor-
mance trends of the three methods are different. The total
cost of P is lower than that of RO but higher than and closer
to the total cost of CC as the sample size increases. The

total cost of CC does not change much with the increasing
sample size, compared to the total cost of RO and P. Fig. 3
illustrates how the violation rates of different methods change
with the increasing sample size. The violation rate of CC is
much greater than 0.05. RO maintains a rate of 0 but incurs a
higher cost than P and CC. P exploits the flexibility of the bi-
level chance constraint, with a violation rate below 0.05 and
decreasing costs as the sample size grows.
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Fig. 2. Impact of sample size on costs.
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Fig. 3. Impact of sample size on constraint violation rate.

Table I shows the performance of P and benchmarks when
n1 = 3640 and ny, = 1560. The relative cost increment is the
ratio of the difference between the actual cost and the optimal
cost to the optimal cost. 8 means the ratio of the number
of violated constraints to the length of 7. PO has a negative
relative cost increment, indicating a lower cost compared to
the optimal cost, but the violation rate significantly exceeds
0.05. P achieves a low cost close to CC and &’ is below and
closest to the desired 0.05.

According to Fig. 4, the grid is the primary source of
electricity, supplemented by renewable energy, the EES, and
the CHP. The EES discharges when electricity prices are high
and charges when prices are low. Fig. 5 shows that most
natural gas is used for electricity generation by the CHP
because converting natural gas to electricity through the CHP
is more cost effective than purchasing the equivalent amount
of electricity. Fig. 6 shows that the gas boiler is the primary
source of heat because it is more efficient in converting natural
gas to heat compared to the CHP. In Fig. 7, the cooling supply
mainly comes from the absorption chiller. The system tends to
convert heat rather than electricity to cooling due to the low
natural gas price.

1524
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 13:26:58 UTC from IEEE Xplore. Restrictions apply.



TABLE I

COMPARISON ACROSS DIFFERENT METHODS

Method | Relative Cost Increment | Constraint Violation Rate
PO —0.721% 10%
P 3.334% 4.25%
CC 3.101% 12.5%
RO 20.253% 0
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Fig. 4. Electricity flow.
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V. CONCLUSION

In this paper, we introduce a novel statistically feasible
mixed-integer programming formulation for scheduling an
integrated energy system. To address the problem’s nonlinear
and discrete characteristics, we utilize a constructed uncer-
tainty set and Benders decomposition. Our approach effec-
tively manages the uncertainty of renewable energy generation
using historical data, ensuring high probability adherence to
the constraints while avoiding over-conservatism. Extensive
numerical studies validate that the approach achieves a low
cost and a violation rate close to the desired 0.05, compared
to other benchmarks. Future work could explore the extension
of this method to more uncertainties, further enhancing its
applicability.
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