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Abstract—This paper investigates the online operation of distributed data centers equipped with energy battery. We aim to minimize their
long-term operational cost by optimally distributing workload among data centers and operating energy battery. However, future spatio-
temporally variant uncertainties in both workload and electricity prices have been the main impediment for a performance-guaranteed
online data center operation strategy. To address this issue, we develop a fully distributed online algorithm that decouples workload
distribution and battery operation across the network and time by introducing well-designed virtual queues for workload and batteries
into the framework of Lyapunov optimization. Theoretically, an analytical gap between the long-term operational cost achieved by our
algorithm and the theoretical optimum is provided to corroborate the desirable operation strategy. Extensive simulations using the real-
world workload and electricity price data demonstrate the cost-delay tradeoff that our algorithm strikes and validate the theoretical results
that we obtained.

Index Terms—Distributed data centers, battery, Lyapunov optimization.
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1 INTRODUCTION

IN recent years, cloud service providers have been driven
to build data centers (DCs) by the continuously increas-

ing demand for data processing worldwide. Huge energy
consumption comes along with the prosperity of DCs, and
the electricity bill has accounted for the majority of the total
DC expenditure [1]. It would save cloud service providers
millions of dollars to improve operational efficiency by
even one percent [2], which has incentivized the industry
to build and run green DCs in an energy-efficient way.
There has been a large literature on improving energy
efficiency of DCs from various perspectives, e.g., hardware
and infrastructure [3], thermal management that reduces
energy consumption of cooling systems [4], [5], dynamic
resource allocation that mitigates energy demand [6], [7],
and workload scheduling and alternative energy supply
that cut down energy cost [8], [9].

However, most, if not all, of the above work [4]–[9]
concentrates on one isolated DC, whose efficiency improve-
ment has been approaching the bottleneck with all recent
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advances in theory and technology. Therefore, a network of
distributed DCs that further exploits spatial variations of
electricity prices and allows workload transfer has drawn
increasing attention. The infrastructure of a distributed DC
system, as shown in Fig.1, consists of mapping nodes (MNs)
which receive and distribute workload, DCs which process
workload, and the communication links between MNs and
DCs for workload transfer. It is commonly modeled by a
bipartite graph [10], [11]. In addition, energy supply for
DCs usually comes from two sources: electricity purchased
from the power grid and drawn from battery battery. Battery
has become essential to DCs as backup to hedge against
power failure [12]. However, a recent report [13] pointed out
that these batteries are highly underutilized, whose ability
to shift peak demand away from high-price periods has
not been fully explored [14]–[16]. From above, distributed
DCs are expected to take full advantage of (a) temporal
and spatial price diversity, (b) battery and (c) deferability
of workload to reduce operational cost.

Geographical load balancing has been well investigated
for distributed DCs. [11] deals with the resource allocation
problem of the distributed DCs from a stochastic learning
and dual decomposition perspective, and develops a power
procurement strategy. [17] integrates onsite renewable gen-
eration, electricity procurement from the grid and geograph-
ical workload balance to reduce energy cost of distributed
DCs and increase renewable energy utilization. [18] and
[19] jointly consider the day-ahead electricity bidding and
the workload balance among DCs. [20], [21] coordinate
workload processing to reduce electricity generation cost of
a smart grid. Especially an online algorithm is developed
using the predicted workload based on the receding horizon
control (RHC) method in [22]. There are a lot more other per-
spectives of reducing operational cost for DCs, e.g., making
use of battery [17], [23], participating in demand response
programs [24], [25], and coordinating workload in both tem-
poral and spatial domains [26], [27]. However, the existing
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literature usually only covers one or two of the advantages
of distributed DCs discussed above and a comprehensive
cost reduction model is missing. Besides, uncertainties of
future electricity prices and workload in real-time operation
are not well addressed. Common assumptions are made that
either the distributions of stochastic variables are known or
their accurate prediction in a future window is available.
These prerequisites are difficult to realize in practice and
therefore render the corresponding methods unlikely to
implement.

It is noteworthy that there is another line of relevant
studies in energy harvesting [28]–[30] which share similar
model with the one considered in this paper. An energy
packet network (EPN) model is established in [28], and the
workload distribution among the workstations is optimized.
Taking into account the insufficient supply of intermittent
energy, [29] introduces a mathematical model of a cascaded
multihop network where each node gathers energy through
harvesting. A new product-form solution (PFS) is derived
for the joint probability distribution of energy availabil-
ity, and job queue length for an N-node tandem system.
Building upon G-network queuing theory, [30] proposes to
optimize the work and energy flow in an EPN, and attains
the equilibrium probability distribution for both the backlog
of work and the backlog of energy. The goal of these works
is usually to minimize the response time of the jobs without
considering the locational energy diversity.

In comparison, this paper jointly exploits all the afore-
mentioned three advantages for operational cost reduction
of distributed DCs, i.e., specify the routing of workload and
determine the usage of battery to complement power supply
from the power grid such that the long-term operational
cost of distributed DCs is minimized. Since future electricity
prices and workload are not known in advance, the problem
is formulated as a stochastic network optimization problem
[31]. Our fundamental idea is to take advantage of spatio-
temporal variations of electricity prices, battery as energy
buffer, and flexibility of workload so as to alleviate the
impact of uncertainties in future workload and electricity
prices. We build on Lyapunov optimization to design a
fully distributed online algorithm that well manages future
uncertainties and is readily implementable in practice.

Lyapunov optimization has been broadly studied in on-
line stochastic network optimization [31]–[34]. In particular,
in the context of DC operation, [35], [36] employ Lyapunov
optimization to address price and workload uncertainties.
A comprehensive operation including the workload admit-
tance and dispatch, the scaling of processing frequencies
and the consolidation of servers and network connections is
jointly considered in [37], [38]. Both geographical workload
distribution and server management are addressed in a
hierarchical two timescale model in [10]. [36] develops a
distributed method to coordinate tenants colocated in one
DC. One major concern about Lyapunov optimization is
that it mainly tackles average performance, e.g., trades off
between average queue length and average cost in our
problem. However, it may perform extremely poor under
some circumstances, e.g., delay workload significantly in the
case of low workload arrival rate [39]. There is no guarantee
on worst-case performance. In our work we come up with
a novel idea of designing virtual queues to additionally
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Fig. 1. The Infrastructure of Distributed Data centers

bound worst-case workload queuing delay.
Our main contributions are summarized below.

• We investigate the battery-assisted online operation
of distributed DCs in the presence of uncertain
electricity prices and workload. Based on Lyapunov
optimization, we develop a fully distributed online
algorithm which bounds the gap between the long-
term operational cost and its theoretical optimum.

• Novel virtual queues are designed in addition to real
workload queues, such that the worst-case queuing
delay can also be bounded in the online operation of
distributed DCs. Therefore, the quality of service is
enhanced.

• We further incorporate batteries to augment the flexi-
bility of the distributed DC network. By constructing
virtual queues for batteries and properly designing a
Lyapunov function, we derive an explicit condition
that guarantees the fulfillment of battery capacity
constraints while realizing desirable long-term op-
erational cost.

• The workload traces of Google DCs and the real-
time electricity prices from the PJM ISO [40] 1 are
employed to conduct the realistic simulations, which
corroborate our theoretical analysis.

The remainder of the paper is organized as follows:
Section II describes the mathematical models of the dis-
tributed DCs and formulates the long-term operational cost
minimization problem. We propose our distributed online
algorithm based on Lyapunov optimization and analyze its
performance guarantee in Section III. Section IV presents
the simulations on synthetic and real-world data. Finally,
Section V concludes this paper.

2 PROBLEM FORMULATION

2.1 Distributed Data Centers and Workload
A distributed DC system, as illustrated in Fig. 1, consists of
a set of geographically distributed DCs, I = [1, 2, · · · , I], a

1. PJM stands for the Pennsylvania, Jersey, Maryland Power Pool. At
present, PJM market is the wholesale electricity market that operates an
electric transmission system serving all or parts of Delaware, Illinois,
Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina,
Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, and the District
of Columbia.
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set of MNs, J = [1, 2, · · · , J ] and the communication links
between the DCs and MNs. The workload from the users
arrives at the MNs which distribute them among the DCs to
process. In this way, the MNs and DCs play the roles of the
front end and the back end, respectively. We denote the DCs
connected with MN j and the MNs connected with DC i by
ΩFj and ΩBi , respectively.

We only consider workload that is delay tolerant. Fur-
ther assume the energy consumed to process each unit of
workload is constant, then we are able to quantify workload
by the amount of energy consumption. Workload is served
in a First-In-First-Out (FIFO) fashion. That is, the workload
that arrives at the MNs (DCs) earlier has higher priority
to be transferred (processed). The DC operation includes
workload distribution and power supply management, and
the latter mainly involves electricity purchase and battery
management. Workload distribution is to specify at each
time slot the amount of workload each MN should transfer
to each DC. Power supply management in each data center
is to decide the amount of electricity to purchase from
different local electricity markets for processing workload
and the usage (charging/discharging) of battery.

We consider a slotted time horizon T = [1, 2, · · · , T ]. At
the beginning of time slot t, the amount of workload that
arrives at MN j is denoted by aj(t), aj(t) ∈ [0, Aj ], where
Aj is the maximum amount of the workload that can enter
MN j. After workload arrives at MNs, it will be dispatched
to certain DCs to be processed. At time slot t, if MN j holds a
workload queue with length qFj (t), receives workload aj(t)
and delivers workloadmji(t) to DC i, i ∈ ΩFj , the remaining
workload at t+ 1 is

qFj (t+ 1) = max{qFj (t) + aj(t)−
∑
i∈ΩFj

mji(t), 0} (1)

At time t, if DC i holds a workload queue with length qBi (t),
receives workload mji(t) from MN j, j ∈ ΩBi and processes
ei(t) amount of workload, the resultant queue at t+ 1 is

qBi (t+ 1) = max{qBi (t) +
∑
j∈ΩBi

mji(t)− ei(t), 0} (2)

Suppose the bandwidth cost for transferring workload
is proportional to the amount transferred and denote the
constant unit price between MN j and DC i by αji, which
usually depends on the distance and communication condi-
tion of the link. The workload transferring cost of MN j is
then

∑
i∈ΩFj

αjimji(t). Besides, the bandwidth of each link
limits the maximum amount of transferable workload:

0 ≤ mji(t) ≤Mji,∀j ∈ J,∀i ∈ I,∀t ∈ T (3)

2.2 Energy
The energy provision for DCs includes the electricity pro-
cured from the grid and the battery owned by DCs.

2.2.1 Electricity from the grid
Let pi(t) denote the real-time electricity price in the local
electricity market where DC i is located. Denoted by xi(t)
the amount of electricity purchased in time slot t by DC
i, then the electricity bill is pi(t)xi(t). Assume pi(t) is
bounded in a compact set: pi ≤ pi(t) ≤ pi.

2.2.2 Battery
We exploit the battery to improve operational efficiency of
DCs. Let bi(t), ci(t) and di(t) be the battery energy level,
charged energy and discharged energy at time t in DC i,
respectively. Then the following equation (4) characterizes
the dynamics of the battery energy level:

bi(t+ 1) = bi(t) + ηcci(t)−
1

ηd
di(t) (4)

where ηc, ηd ∈ (0, 1) are the charging and discharging
efficiencies, respectively.

We make a mild and fundamental assumption here:

Assumption 1. The upper and lower bounds of electricity prices
and the charging and discharging efficiencies of batteries satisfy

pi < pi · ηcηd (5)

Remark 1. If (5) does not hold, namely, piηcηd ≤ pi, then
pi(t1)ηcηdy − pi(t2)y ≤ (piη

cηd − pi)y ≤ 0, ∀y > 0 and
∀t1, t2 ∈ T, which means the cost of electricity when charged
is always no less than its revenue when discharged, causing
negative profit. In this case, batteries do not help reduce the
operational cost of DCs and will remain idle in any optimal
operation. Therefore, Assumption 1 is made to highlight the benefit
of operating batteries.

We require that each battery i2 should maintain at least
a certain level of energy bi. Denote its capacity by bi, then
bi(t) needs to satisfy

bi ≤ bi(t) ≤ bi,∀i ∈ I,∀t ∈ T (6)

Note that constraint (6) couples the operation of batteries
over the whole time horizon, which brings a great challenge
to the design of online algorithms. To decouple across time
slots, a virtual queue method is designed, as we will explain
in Subsection 3.2.

The cost of batteries is quantified by their usage. Let
cONi (t) be a binary variable denoting the charging state
of battery i in slot t. If cONi (t) = 1, battery i is be-
ing charged; otherwise, it is not being charged. We de-
fine the corresponding discharging variable dONi (t) simi-
larly. Let β represent the battery loss coefficient, then the
cost of battery i is β(cONi (t) + dONi (t)). The variables,
ci(t), di(t), c

ON
i (t), dONi (t), are constrained as follows:

cONi (t), dONi (t) ∈ {0, 1},∀i ∈ I, ∀t ∈ T (7)

0 ≤ ci(t) ≤ cONi (t) · ci,∀i ∈ I,∀t ∈ T (8)

0 ≤ di(t) ≤ dONi (t) · di,∀i ∈ I,∀t ∈ T (9)

0 ≤ cONi (t) + dONi (t) ≤ 1,∀i ∈ I,∀t ∈ T (10)

(8) and (9) ensure that the charging and discharging rates
are nonnegative and upper bounded by ci and di, respec-
tively, and (10) indicates that no simultaneous charging and
discharging are allowed.

Meanwhile, the energy consumption and provision in
DC i should be balanced:

ei(t) = xi(t) + di(t)− ci(t),∀i ∈ I,∀t ∈ T (11)

2. We abuse i to index both DCs and batteries without ambiguity.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 17,2022 at 06:42:36 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3132174, IEEE
Transactions on Cloud Computing

Obviously, ei(t) should be nonnegative and upper bounded
due to the limited workload processing capability of DC i,
i.e.,

0 ≤ ei(t) ≤ Ei (12)

For brevity, we collect the stochastic parameters, aj(t)
and pi(t), in S(t), t ∈ T, and summarize the decision
variables, xi(t), cONi , dONi (t), ci(t), di(t) andmji(t), inX (t).
Note that we do not assume any prior knowledge of dis-
tributions for S(t), thus our method is quite general. The
network should be stabilized under the online decision X (t)
in the sense of stable and finite queues, i.e.,

lim
T→∞

1

T

∑
t∈T
{
∑
j∈J

E[qFj (t)] +
∑
i∈I

E[qBi (t)]} <∞ (13)

where E[·] is the expectation taken with respect to the
uncertain S(t).

2.3 Problem Formulation
Based on above model, the total cost of the distributed DC
system for each time slot is composed of the electricity bill,
battery loss and bandwidth cost:

f(t) =
∑
i∈I

[pi(t)xi(t)+β(cONi (t)+dONi (t))+
∑
j∈ΩBi

αjimji(t)]

The long-term operational cost minimization problem is
then formulated as follows:

P1 : min
X (t)

lim
T→∞

1

T

∑
t∈T

E[f(t)]

s.t. (1)− (4), (6)− (13)

Problem P1 is difficult for three reasons: 1) P1 is a large-
scale mixed-integer linear programming (MILP) problem,
which is computationally prohibitive to solve directly; 2)
The future electricity prices and workload are not known a
prior; 3) All time slots are coupled by the battery capacity
constraint (6).

Before proceeding to design an efficacious online algo-
rithm that provably works well for P1, we derive a relax-
ation of P1 that is easier to characterize as a benchmark.
First, we relax constraints (4) and (6) into the following
equation:

lim
T→∞

ηc
1

T

∑
t∈T

E[ci(t)] = lim
T→∞

1

ηd
1

T

∑
t∈T

E[di(t)],∀i ∈ I

(14)
(14) can be obtained by summing (4) over t = 1, 2, · · · , T ,
dividing by T , and taking the expectation with T going to
infinity. The initial and final battery energy levels, divided
by T , vanish as T →∞.

It can be verified that (14) is a necessary but not sufficient
condition of (4) and (6). Therefore, the following P2 is a
relaxation of P1.

P2 : min
X (t)

lim
T→∞

1

T

∑
t∈T

E[f(t)]

s.t. (1)− (3), (7)− (14)

Although P2 is a relaxed version of P1, it is still dif-
ficult to characterize the property of its solution. In order
to provide a benchmark, we further assume that S(t) is

from an identical and independent distribution (I.I.D.). Then
following theorem characterizes the solution to P2. Note that
the proofs of all the theorems in this paper can be found in
the supplementary materials.

Theorem 1. Given that the stochastic parameter S(t) follows
I.I.D. over T, there exists a stationary randomized decision X̂ (t),
which requires only the current information S(t) and satisfies

ηcE[ĉi(t)] =
1

ηd
E[d̂i(t)] (15)

E[
∑
i∈ΩFj

m̂ji(t)] = E[aj(t)] (16)

E[
∑
j∈ΩBi

m̂ji(t)] = E[êi(t)] (17)

E[f(t)] = f̂ (18)

where f̂ denotes the optimal objective value of P2.

The proof of Theorem 1 follows directly from [41] and
is omitted here for brevity. Equations (15)-(17) indicate the
energy and workload balance: the amount of electricity
drawn from a battery equals the amount injected into the
battery; the amount of workload distributed by a MN equals
the amount it receives; the amount of workload processed
by a DC equals the amount it is assigned. However, it should
be noted that the strategy X̂ (t) may be infeasible for P1,
since the upper bound and lower bound of battery energy
levels are ignored and may be violated. The solution to P2
therefore low bounds that to P1 in terms of the long-term
operational cost. Denote by f∗ the optimal objective value
of P1, then obviously f̂ ≤ f∗. Therefore, we are able to
benchmark against f̂ instead of f∗. To be more specific,
denoted by f̃ the average cost of one online algorithm, then
the fact that f̃ − f̂ is bounded suffices to show f̃ − f∗ is
bounded.

Next we proceed to design an online solution to problem
P1 based on Lyapunov optimization.

3 DISTRIBUTED ONLINE ALGORITHM

3.1 Lyapunov Optimization preliminary
The Lyapunov optimization method is developed for long
term stochastic dynamic network optimization, where the
input and the parameters of the network are random vari-
ables, and the goal is to stabilize the network and mean-
while optimize the utility (minimize the average energy
consumption [32], [42], minimize average delay [33], or
maximize the average throughput [34]). In the Lyapunov
optimization scheme, a Lyapunov function is defined to
quantify the network potential, which is a measurement
of the queues. Minimizing the upper bound of Lyapunov
drift (defined as the increment of Lyapunov function, as
shown in (24)) promises to stabilize the network, because it
maintains the network potential below a certain level. When
the potential moves above this level, the Lyapunov drift
will be negative, which drives the network potential back.
When it comes to stabilizing the network and meanwhile
minimizing the operational cost of the network, the upper
bound of the drift-plus-penalty (weighted sum of the drift
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and the cost) is minimized, which is a tradeoff between
the potential level and the cost. Greedily minimizing the
penalty-plus-drift results in a dynamic controller which
only requires the current information of the network. For
a more comprehensive introduction of Lyapunov optimiza-
tion, please refer to [43], [44].

3.2 Construction of Virtual Queues and Lyapunov
Function

It is not straightforward to directly apply the Lyapunov
optimization method to problem P1 for two reasons: 1) The
constraint (6) is time-coupling, which restrains us from de-
signing an online algorithm with performance guarantee; 2)
Standard Lyapunov optimization bounds only the average
workload queuing delay, but cannot deal with special cases
where the workload arrival rate is low, thereby causing
extremely large delay. To cope with these issues, virtual
workload queues and virtual battery queues are introduced
before defining the Lyapunov function for our problem.

In order to tackle the issue of potential large workload
queuing delay, we define the virtual workload queues zFj (t)
and zBi (t) associated with qFj (t) and qBi (t), respectively.

zFj (t+ 1) = max{zFj (t)−
∑
i∈ΩFj

mji(t) + εFj 1qFj (t), 0} (19)

zBi (t+ 1) = max{zBi (t)− ei(t) + εBi 1qBi (t)>0, 0} (20)

where εFj and εBi are constant weights, which we shall
explain later. 1x is an indicator function with 1x = 1 if
x > 0 and 1x = 0 otherwise. The initial virtual queue
lengths zFj (0) and zBi (0) are 0. By definition, the virtual
queue has a positive arrival rate of workload εFj (εBi ) if the
real queue in MN j (DC i) is not empty. As we will show
later, virtual workload queues can ensure a bounded worst-
case workload queuing delay, especially when the workload
arrival rate is low.

To deal with the time-coupling constraint (6), we further
introduce a virtual queue Bi(t) for each battery:

Bi(t) = bi(t)− bi − ηdV pi + ηcci (21)

where V is a constant to be designed. Bi(t) therefore only
depends on bi(t) and its dynamics are also similar:

Bi(t+ 1) = Bi(t) + ηcci(t)−
1

ηd
di(t) (22)

Let Θ(t) = [qFj (t), zFj (t), qBi (t), zBi (t), Bi(t)] (∀j ∈ J, i ∈
I) be a state vector collecting all the queue information in
the network at time t. Now we define our specific Lyapunov
function as

L(Θ(t)) =
1

2

∑
j∈J

[qFj (t)2 + zFj (t)2]

+
1

2

∑
i∈I

[qBi (t)2 + zBi (t)2 + rBi(t)
2]

(23)

where r is a scaling parameter of virtual battery queues.
The Lyapunov function L(Θ(t)) is a potential function that
quantifies the overall queue lengths in the network. As we
will show later, by carefully choosing the parameters V and

r we are able to satisfy the constraint (6) while providing
bounded performance guarantee.

Remark 2. The intuition is that by Lyapunov optimization,
the Lyapunov function L(Θ(t)), as well as Bi(t), is bounded,
thus a carefully chosen (V, r) pair can guarantee that the real
battery energy level bi(t), the inverse mapping from Bi(t), is also
bounded and always satisfies (6). By this means, we can ignore
the time-coupling constraint and solve the local problem at each
slot in an online manner.

3.3 Distributed Online Algorithm
The Lyapunov drift is defined as the conditional expectation
of the 1-slot increment of the Lyapunov function:

∆(t) = E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)] (24)

By minimizing an upper bound on the Lyapunov drift, we
figure out a one-step operation with approximately the max-
imum decrease or the minimum increase in the Lyapunov
function (potential of queues), given the current system
states Θ(t). This operation is basically a local optimum that
drives the network to a stable equilibrium.

Further, the drift-plus-penalty is then defined as the
weighted sum of the Lyapunov drift and the one-step op-
erational cost given Θ(t):

∆(t) + V E[f(t)|Θ(t)]

where V functions as a weight between the long-term opera-
tional cost and the overall queuing delay. By minimizing the
upper bound on the drift-plus-penalty, we strike a tradeoff
between minimizing the long-term operational cost and
maintaining the network stable. The following lemma gives
an upper bound of the drift-plus-penalty.

Lemma 1. The drift-plus-penalty is upper bounded by

∆(t) + V E[f(t)|Θ(t)] ≤ N1 + rN2 + V E[f(t)|Θ(t)]

+
∑
j∈J

qFj (t)E[(aj(t)−
∑
i ∈ΩFj

mji(t))|Θ(t)]

−
∑
j∈J

zFj (t)E[
∑
i ∈ΩFj

mji(t)|Θ(t)]

+
∑
i∈I

qBi (t)E[(
∑
j ∈ΩFi

mji(t)− ei(t))|Θ(t)]

−
∑
i∈I

zBi (t)E[(ei(t)|Θ(t)]

+
∑
i∈I

rBi(t)E[(ηcci(t)−
1

ηd
di(t))|Θ(t)]

(25)

where N1 and N2 are constant defined below:

N1 =
1

2

∑
j∈J

[max{A2
j ,M

F
j

2}+max{εFj
2
,MF

j

2}]

+
1

2

∑
i∈I

[max{(
∑
j∈ΩBi

Mji + ci)
2, (x̄i + d̄i)

2}

+max{(εBi + ci)
2, (x̄i + d̄i)

2}]
+

∑
j∈J

ZFj ε
F
j +

∑
i∈I

ZBi ε
B
i

N2 =
1

2

∑
i∈I

max{(ηcci)2, (
1

ηd
di)

2}
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and MF
j =

∑
i∈ΩFj

Mji, MB
i =

∑
j∈ΩBi

Mji; ZBi and ZFj are
respectively the upper bounds of zBi (t) and zFj .

Proof. From (1), we have:
qFj (t+ 1)2 ≤ [qFj (t) + aj(t)−

∑
i∈ΩFj

mji(t)]
2 , thus,

1

2
[qFj (t+ 1)2 − qFj (t)2] ≤ 1

2
[(aj(t)−

∑
i∈ΩFj

mji(t))
2

+ 2qFj (t)(aj(t)−
∑
i∈ΩFj

mji(t))] ≤
1

2
max{a2

j ,M
F
j

2}

+ qFj (t)(aj(t)−
∑
i∈ΩFj

mji(t))

Similar bounds can be derived for other queues. (25) is
then straightforward by summing them up, taking the
conditional expectation and adding V E[f(t)|Θ(t)] on both
sides.

Given current queue states Θ(t) and the observed
stochastic parameters S(t) at time t, minimizing the right-
hand side of (25) is equivalent to solving the following local
problem:

P3 : min
X (t)

∑
i∈I

gi(t) +
∑
j∈J

∑
i∈ΩFj

gji(t)

s.t. (3), (7)− (12)

where gi(t) and gij(t) follows directly below from the right-
hand side of (25) by dropping the constant terms and the
expectation operator, since current S(t) has been realized.

gi(t) = V pi(t)xi(t) + (qBi (t) + zBi (t))(−xi(t)− di(t) + ci(t))

+ rBi(t)(η
cci(t)−

1

ηd
di(t)) + V β(cONi (t) + dONi (t))

gji(t) = (V αji + qBi (t)− qFj (t)− zFj (t))mji(t)

Therefore, P3 is equivalent to trading off between min-
imizing the operational cost and maintaining stable and
finite workload queues. The network would be stabilized
by implementing the solution of P3, since once the queues
grow too long, more electricity will be provided to accelerate
processing the workload, as implied by gi(t) and gji(t).
Note that the time-coupling constraint (6) is not involved
in P3.

By this means, the original time-coupled problem can be
solved in an online fashion. Next we show that problem P3
can be further tackled in a distributed manner. Denote by
X1(t) and X2(t) the sets that summarize all the local op-
eration variables of DCs i, xi(t), cONi (t), ci(t), d

ON
i (t), di(t)

and the network routing variables, mji(t), respectively. The
problem P3 naturally decomposes into two subproblems:
the local power management (LPM):

LPM : min
X1(t)

∑
i∈I

gi(t)

s.t. (7)− (12)

ei(t) ≤ qBi (t) +
∑
j∈ΩBi

mji(t),∀i ∈ I

Algorithm 1 Distributed Online Operation Strategy of Dis-
tributed DCs

Initialization: Set t = 0, zFj (t) = 0, qFj (t) = 0(j ∈ J),
zBi (t) = 0, qBi (t) = 0, Bi(t) = −bi − ηdpiV + ηcci(i ∈ I).
while (t ≤ T ) do

For each MN j: receive the queue information from all
DCs i, i ∈ ΩFj , and solve its NWR problem.
For each DC i: solve its LPM problem.
Update the queues according to (1), (2), (19), (20) and
(22).
Set t = t+ 1;

end while

and the network workload routing (NWR):

NWR : min
X2(t)

∑
i∈I

∑
j∈ΩBi

gij(t)

s.t. (3),∑
i∈ΩFj

mji(t) ≤ qFj (t) + aj(t),∀j ∈ J

Remark 3. The advantages of Lyapunov optimization are three-
fold: 1) The introduction of virtual battery queues allows us to re-
move the time-coupling constraint (6). Consequently, the problem
reduces to dynamically minimizing the local drift-plus-penalty
in an online fashion; 2) At each time slot, since current queues
and stochastic parameters have been observed, the conditional
expectations are also removed; 3)Problem P3 can be decomposed
into LPM and NWR, both of which can be solved in a distributed
manner.

3.4 Distributed Implementation and Computational Ef-
fort
It can be observed that the LPM problem is naturally decou-
pled among DCs, and thus can be decomposed into I sub-
problems, each of which can be solved separately in the local
DC. Each subproblem is an MILP problem with two binary
variables, (cONi (t), dONi (t)). Since simultaneous charging
and discharging are not allowed, there are only three com-
binations for the two binary variable, i.e., (0, 0), (1, 0), (0, 1).
The subproblem then further boils down to three linear
programming (LP) problems. The NWR problem can be
similarly solved in a decentralized manner. Each MN solve
its own NWR, which is an LP problem, independently
with the queue information from the connected DCs. The
distributed online algorithm is summarized in Algorithm
1. The large-scale stochastic MILP finally reduces to simple
online LPs local to MNs and DCs.

In summary, when Algorithm 1 is executed online, the
computation overhead of each DC or MN is small. Commu-
nications between the connected DC and MN are required,
which is trivial compared with workload transfer. Hence,
Algorithm 1 can be implemented at the cost of little compu-
tation and communication burden on MNs and DCs.

3.5 Virtual Queue Revisit
We will show in this subsection how virtual workload
queues guarantee the bounded worst-case workload queu-
ing delay and how the proper choice of parameters (V, r)
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(a) Virtual workload queue
(b) Virtual battery queue

Fig. 2. Relationship between the real queue and the virtual queue

ensures to respect the battery energy level constraint and
maintains bounded performance gap from theoretical opti-
mum. These are summarized in the following three theo-
rems.

Theorem 2. The worst-case queuing delay of the workload
that arrives at MN j is bounded: delay of workload ≤ DF

j +
maxi∈ΩFj

{DB
i }, where DB

i = |(QBi + ZBi )/εBi + 1|+ and
DF
j = |(QFj +ZFj )/εFj + 1|+. |x|+ denotes the smallest integer

number that is larger than or equal to x. ZBi = V pi + εBi
and ZFj = V αj + QB,j + εFj are respectively the upper
bounds of zBi (t) and zFj . (αj , maxi∈ΩFj

{αji} and QB,j ,

maxi∈ΩFj
{QBi }.)

The proof is in Appendix B (All the appendixes in the
paper can be found in the supplementary materials 3).
This Theorem provides a worst-case delay guarantee for
workload, in contrast with the average delay guarantee in
previous studies. We briefly explain how virtual workload
queues work to reduce workload delay. Assume at MN j,
the workload arrival rate is low and even 0. The coefficient
of mji(t) in gji(t), V αji + qBi (t) − qFj (t) − zFj (t) > 0, is
likely to hold for a long time with empty virtual work-
load queues, i.e., zFi (t) = 0. Since the NWR of MN j is
to minimize

∑
i∈ΩFj

gji(t), mji(t) will be zero if V αji +

qBi (t)− qFj (t)− zFj (t) > 0, which means the workload will
not be transferred for a long time, causing a large delay.
However, if there is a virtual workload queue at MN j, it
will keep increasing as long as there is workload waiting
to be transferred until V αji + qBi (t) − qFj (t) − zFj (t) < 0
for some i ∈ ΩFj . Under this condition, the solution mji

will be positive, and workload will be transferred. The
virtual workload queues at DCs work in a similar way.
As illustrated in Fig. 2(a), a virtual workload queue can be
deemed as an integral of a real workload queue, which is
designed to push MNs (DCs) to transfer (process) workload.
Large εFj and εBi commit to a small queuing delay at the
expense of large operational cost.

The following theorem provides a guideline to set pa-
rameters (V, r).

Theorem 3. If r > 1 and V satisfies

ηcci + 1
ηd
di + 1

rη
d(MB

i + εBi )

ηd(1− 1
r )pi

≤ V ≤
bi − bi

ηdpi − 1
rηc pi

(27)

3. https://zjueducn-my.sharepoint.com/:b:/g/personal/
sunjun15 zju edu cn/EbM6wVFi1OJLiSjID4ehNocBNWx
tZrlR2Wny8PXEaZg-Q?e=i3zDiU

the battery operation by Algorithm 1 will always respect the
constraint (6).

The proof is in Appendix C. Intuitively, since the Lya-
punov function is bounded all the queue lengths are finite.
Meanwhile, given the proper (V, r) and limited charging
and discharging rate, a virtual battery queue Bi(t) only
varies in a certain range, which maps exactly to [bi, bi]. The
transformation between a real battery state and a virtual
battery state is demonstrated in Fig. 2(b).

Recall that our goal is to minimize the long-term op-
erational cost of the distributed DC network, the overall
performance in terms of the cost should be evaluated. As
indicated by the following theorem, the average operational
cost achieved by Algorithm 1 is bounded within a constant
gap from theoretical optimum.

Theorem 4. The gap of average long-term operational cost
between Algorithm 1 and theoretical optimum is bounded by:

lim
T→∞

1

T

∑
t∈T

E[f(t)]− f∗ ≤ N

V
(28)

where N = N1 + rN2.

Proof. For brevity, let h(X ) be the right-hand side of (25)
and X ′ be the optimal solution to LPM and NWR. It is
straightforward that h(X ′) ≤ h(X̂ ) because X ′ minimizes
h(X ). Therefore, the drift-plus-penalty corresponding to X̂
satisfies:

∆(t) + V E[f(t)|Θ(t)] ≤ h(X ′) ≤ h(X̂ ) ≤ N + V f̂ (29)

where the third inequality follows from (15)-(18). Summing
up (29) over [1, 2, ..., T ], divided by V T , and driving T →∞
result in:

lim
T→∞

1

T

∑
t∈T

E[f(t)]− f̂ ≤ N

V
(30)

which, together with the fact f̂ ≤ f∗, yields the desired gap
(28).

4 NUMERICAL RESULTS

Our experiments encompass two parts, synthetic simula-
tion and simulation with realistic workload and electricity
prices, corresponding to the following two subsections. In
both of the two simulations, we use Matlab to emulate the
data center system schematically represented in Fig. 1. The
simulations are carried out on a Macbook with 2.3GHz Intel
core i5, and 8G memory. Throughout the experiments, each
time slot in the simulations represents one hour.

4.1 Synthetic Simulation
A small-scale network of distributed DCs is used to test
the proposed method. The network consists 8 DCs and
50MNs, and the communication links are randomly picked.
The electricity prices at different DCs and different time
slots are uniformly distributed in the price set {p|p =
10 + 0.2i, i = 1, 2, · · · , 50}, and the routing price αij is
randomly preset from range [2, 5]. At each time slot, the
amount of workload that enters each MN is uniformly sam-
pled from [0, 150] in terms of kWh. The parameters of the
batteries are:c = 100kWh, d = 100kWh, bi = 1000kWh,
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Fig. 3. The transition process of the system from transient state to steady state
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Fig. 4. Long term average operational cost evaluation

bi = 2000kWh and ηc = ηd = 0.8. We set εFj = 50kWh,
εBi = 200kWh and r = 2. Some auxiliary variables are
defined here to help us better describe and understand the
results: Let A = 1

T

∑
t ∈T

∑
j∈J

aj(t), M = 1
T

∑
t ∈T

∑
j∈J

∑
i∈ΩFj

mji(t),

E = 1
T

∑
t ∈T

∑
i∈I
ei(t), and X = 1

T

∑
t ∈T

∑
i∈I
xi(t) be the time-

average total workload that arrives at all the MNs, the trans-
ferred workload, the total electricity consumption to process
the workload and the electricity procured from the grid, re-
spectively. Let QF = 1

T

∑
t∈T

∑
j∈J

qFj (t), QB = 1
T

∑
t∈T

∑
i∈I
qBi (t)

and F = 1
T

∑
t∈T

f(t) be the time-average total workload

at the MNs and DCs, and the average operational cost,
respectively.

We first show the transition process of the system from
transient state to steady state and the impact of V on this
process and the final steady state. It is observed in Fig.3(a)
that all the variables will converge to a steady-state level.
It is anticipated that A, M and E will converge to the
same level, and X will be above that level, due to losses in
the charging and discharging process. It is seen in Fig.3(b)
and Fig.3(c) that the larger V is, the more workload will
be backlogged at MNs and DCs, but the lower the average
operational cost will be, as shown in Fig.3(d).

Next we evaluate the benefit of batteries to cut down
the operational cost and show the gap between the cost
by Algorithm 1 and an offline optimum. The offline algo-
rithm knows all the stochastic parameters in advance. It is
illustrated in Fig.4(a), as V increases, the cost by Algorithm
1 decreases, and batteries reduce the cost by about 4%-
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Fig. 5. The realistic data center workload and electricity prices

6%. Fig. 4(b) suggests that both costs will decrease as the
queue backlog increases, but the former decreases faster.
Therefore, the relative gap defined as RG = (Fonline −
Foffline)/Foffline goes down from 0.230 to 0.125.

4.2 Realistic Workload and Electricity Price Simulation
For the realistic data analysis, we use the workload trace
from Google cluster [45]. The workload trace represents 29
days’ workload on a cluster of about 12.5k servers in May
2011. Suppose that the workload is received in 15 MNs
and processed in 3 DCs, and the workload is quantified
by the electricity demand, as shown in Fig 5(a), where
the peak load is mapped to the full capacity of 3 DCs
(60MWh). The public electricity prices in three different
regions, as shown in Fig. 5(b), are drawn from the PJM
ISO (About the negative electricity prices, this phenomenon
indeed exists in deregulated electricity markets such as PJM,
Nord pool, and CAISO. This happens when the electricity
supply exceeds the demand. Because of the inertia of the
generator, the generator cannot stop immediately when
the supply is higher than the demand. Therefore, in order
to maintain the stability of the voltage, the supply side
will offer negative prices to encourage the consumer to
digest extra electricity). The setup for our simulation is
εFj = 0.5MWh, ∀j ∈ {1, 2, · · · , 15}, εBi = 2MWh and
r = 2, ci = 5MWh, di = 5MWh, bi = 20MWh, bi =
5MWh, ηc = ηd = 0.8, Ei = 20MWh,∀i ∈ {1, 2, 3}, and
the bandwidth limit Mij and the routing cost αij between
the MNs and DCs are randomly set within the ranges
[2, 5]MWh and [5, 10]$/MWh. (As for the parameters of the
data centers, they are not publicly available, and hence we
set them by ourselves. For instance, bi and bi are determined
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such that when the battery is fully charged, it can support
the data center for an hour [46]; while its lowest energy level
can sustain the data center for about 10 to 20 minutes when
power failure accidentally happens. Ei is set such that the
system is able to accommodate the possible continuing high
rate of incoming workload(20MWh). εFj and εBi are about
10% of the highest incoming workload rate at the MNs
and the DCs, respectively, to penalize the accumulation of
workload.)

Fig. 6 shows the electricity procurement of one of the
DCs versus the local electricity prices. In general, DCs
purchase electricity at low prices to process workload and
charge batteries. When the price at a certain DC is high, it
will not be assigned much workload to avoid purchasing
a large amount of electricity. The evolution of the battery
energy level at DC 1 is shown in Fig. 7. It is observed
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that Algorithm 1 uses the battery more frequently, and the
battery constraint is always respected. Fig. 8 shows the
cumulative operational cost of the DCs with and without
batteries by Algorithm 1 and the offline optimal strategy.
The benefit of batteries is significant by saving about 50,000
dollars (approximately 12% of the operational cost without
batteries) in one month.

Fig. 6 shows the electricity procurement of one of the
DCs versus the local electricity prices. The results verify that
with the proposed strategy, the DCs are operating economi-
cally, meaning that they utilize cheap energy to process the
workload. In specific, the DCs purchase electricity at low
prices to process workload and charge batteries. When the
price at a certain DC is high, this DC will not be assigned
much workload to avoid purchasing a large amount of
electricity. The evolution of the battery energy level at DC
1 is shown in Fig. 7, and it is shown that the energy level
maintains within [-5, 20], validating Theorem 3. Moreover,
it is observed that online Algorithm 1 uses the battery more
frequently compared with its offline counterpart which
possesses all future information, thus avoiding short-sight
decisions and optimizing entire-horizon operation. Fig.8
reports the cumulative operational cost of the DCs with and
without batteries by Algorithm 1 and the offline optimal
strategy. The benefit of batteries is significant as it saves
about 50,000 dollars (approximately 12% of the operational
cost without batteries) in one month.

It is noteworthy that Algorithm 1 performs better than
the offline optimal strategy in the first 100 time slots. Recall
that the initial workload queue lengths are 0’s. Algorithm
1 tends to postpone processing workload at the beginning,
while the offline optimal strategy processes workload from
a global perspective and avoids overusing the deferrability
of workload at the beginning.

5 DISCUSSIONS AND CONCLUSIONS

5.1 Discussions

In this paper, we mainly concentrate on the operational cost
minimization of distributed DCs by exploiting the defer-
ability of workload, workload distribution and batteries. In
our problem formulation some assumptions are adopted to
simplify the model. These simplifications help us to ignore
tedious technical details and focus our attention on our
interests. We have some discussions on the assumptions
below.

• The workload is quantified in terms of energy. To
be specific, resource demand of workload consists
of many components, including the CPU, memory,
storage disk. Some models use one of the demand to
represent the resource demand of the workload, and
there are literatures that treat the multiple resource
requests separately [47]. The electricity consumption
of a data center comes from the IT infrastructure,
cooling, and power conversion et al [48]. Since we
concern the energy consumption of the data centers,
we follow the routine to quantify the workload in
terms of electricity demand [18], [49]. It should be
noted that the document of Google does no quantify
the workload load by energy. In the simulation, we
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count the tasks in each time slot and map the number
of the tasks to the energy request, supposing that the
energy consumption is proportional to the number
of tasks [19], [49].

• The transfer cost (bandwidth cost) is proportional
to the amount of transferred workload. For each
communication link the transfer price is different and
constant. The nonlinear convex cost is also employed
in the some research, such as [11]. We employ the
linear cost model because it is more brief in the
theoretical analysis. It worths mentioning that the
proposed method applies to the more general case
where the cost is an increasing convex function.

• The stochastic workload and price follow indepen-
dent and identical distribution (I.I.D.). I.I.D. is a
widely used assumption in similar studies [11], [32]–
[34], [50]–[55]. Therefore, we just follow the standard
assumption in this field. In the simulation section,
we first conduct synthetic simulation that employs
workload and electricity price generated from I.I.D..
The results verify the theoretical analysis. In the real
world data simulation, we use the Goolge workload
trace and PJM electricity price. These real data may
not rigorously follow I.I.D. The numerical results
show that the proposed method performs well on
these real data.

The robustness of the proposed approach can be illu-
minated from two perspectives. 1) The assumption: Albeit
the system is faced with stochastic workload and electricity
prices, this work does not assume that the distributions of
the stochastic variables are known. This makes the algo-
rithm design and analysis distribution-free, which means
the resultant algorithm is robust and applicable to a broad
range of scenarios with different distributions. 2) The results:
The delay guarantee established in Theorem 2 is derived via
worst-case analysis, and thus the delay guarantee is robust.
As for the cost, Theorem 4 ensures that the long-term cost
will not be too high relative to the optimal cost. There indeed
exists such case in theory that the cost for some period might
be large. But this does not undermine the value the the long-
term cost guarantee, because in practice the data centers run
for a long time.

5.2 Conclusions
In this paper we investigate the online operation of battery-
assisted distributed DCs to minimize their long-term op-
erational cost. We take full advantage of spatio-temporal
variations of electricity prices, battery and deferrability of
workload to mitigate the impact of uncertainties in future
workload and electricity prices. Based on Lyapunov opti-
mization, we design virtual queues for workload and bat-
teries and develop a fully distributed online algorithm that
is readily implementable online with provable performance
guarantee. Simulations on real-world data verify our analy-
sis and show significant cost reduction by our algorithm as
well as huge savings by incorporating batteries.
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Supplementary materials for
“Battery-Assisted Online Operation of Distributed Data Centers

with Uncertain Workload and Electricity Prices”

APPENDIX A
THE STABILITY OF THE NETWORK

Before proving our theorems, we first provide the following lemma, which indicates the Lyapunov function is bounded,
thus the network is stable.

Lemma 2. All the queues in the network have a limited length, which are specified as

qBi (t) ≤ V pi +MB
i , QBi ; (31a)

zBi (t) ≤ V pi + εBi , ZBi ; (31b)

qBi (t) + zBi (t) ≤ V pi +MB
i + εBi , UBi ; (31c)

qFj (t) ≤ V αj +QB,j +Aj , QFj ; (31d)

zFj (t) ≤ V αj +QB,j + εFj , ZFi ; (31e)

where αj = maxi∈ΩFj
{αji} and QB,j = maxi∈ΩFj

{QBi }.

The proof is in Appendix D.

APPENDIX B
PROOF OF THEOREM 2
Proof. First, we show that a request arriving at DC i will wait for at most DB

i before it is finished:
Suppose a request arrives at t0, and it is finished exactly at t0 + τ . Since in the time duration [t0, t0 + τ − 1], the request

is not finished, qBi (t) > 0 holds ∀t ∈ [t0 + 1, t0 + τ ]. Therefore,

zBi (t+ 1) ≥ zBi (t)− ei(t) + εBi ,∀t ∈ [t0 + 1, t0 + τ ]

Summing the above inequality over t ∈ [t0 + 1, t0 + τ − 1] yields: zBi (t0 + τ) − zBi (t0 + 1) ≥ −
t0+τ−1∑
t=t0+1

ei(t) + (τ − 1)εBi .

Since 0 ≤ zBi (t) ≤ ZBi (we omit the proof which is not difficult), we have:

t0+τ−1∑
t=t0+1

ei(t) ≥ (τ − 1)εBi − ZBi (32)

The request enters the queue at t0 + 1 and is not completely removed until t0 + τ . The DC processes the request in a
fist-in-first-service manner, thus the electricity the DC provides during [t0 + 1, t0 + τ − 1] must be less than QBi which is
the upper bound of qBi (t). That is,

t0+τ−1∑
t=t0+1

ei(t) < QBi (33)

Combining (32) and (33) gives τ < QBi +ZBi
εBi

+ 1 , which means that the maximum waiting time is DB
i .

Similarly, we can prove that the largest delay of the request at MN j is DF
j , where DF

j = |(QFj + ZFj )/εFj + 1|+.
Consequently, in the worst case, the delay of a request entering MN j is DF

j + maxi∈ΩFj
{DB

i }.

APPENDIX C
PROOF OF THEOREM 3
Proof. The proof of Theorem 3 is based on the following lemma, which indicates that when the electricity of the virtual
battery exceeds a certain level, the battery will not be charged any more; when it is below a certain level, the battery will
not discharge any more.

Lemma 3. The charging and discharging process of the battery follows the rule: when Bi(t) ≥ − 1
rηcV pi, ci(t) = 0; when Bi(t) ≤

− 1
rη
dUBi , di(t) = 0.

The proof is in Appendix E.
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According to the definition of Bi(t), to prove the theorem, we only need to prove Bi(t) satisfies the following inequality
for any V satisfying (27). (Note that the number of equations in the attachment follows that in the paper. Here equation
(27) is in the submitted paper.)

−ηdV pi + ηcci ≤ Bi(t) ≤ bi − bi − ηdpiV + ηcci (34)

Obviously, Bi(1) satisfies (34). Assume at time slot t, Bi(t)satisfies (34), then we need to prove at time slot t+ 1, Bi(t+ 1)
is also in the same range. We discuss the value of Bi(t+ 1) given Bi(t) in the following three cases:

1) If − 1
rηcV pi ≤ Bi(t) ≤ bi − bi − η

dpiV + ηcci, then ci(t) = 0, thus Bi(t+ 1) ≤ Bi(t). And Bi(t+ 1) ≥ − 1
rηcV pi −

1
ηd
di ≥ −ηdpiV + ηcci, where the second inequality holds because V ≥

ηcci+
1

ηd
di+

1
r η
d(MB

i +εBi )

ηd(1− 1
r )pi

≥
ηcci+

1

ηd
di

ηdpi− 1
rηc pi

,
where the last inequality is true because of the premise that the performance of the battery satisfies (5).

2) If − 1
rη
dUBi ≤ Bi(t) < − 1

rηcV pi, obviously, Bi(t + 1) ≥ − 1
rη
dUBi − 1

ηd
di ≥ −ηdpiV + ηcci, where the second

inequality holds because of the left part inequality in (27). And Bi(t+1) ≤ − 1
ηcV pi+ηcci ≤ bi−bi−ηdpiV +ηcci,

where the second inequality holds because of the right part inequality in (27).
3) If −ηdUBi − 1

ηd
di ≤ Bi(t) < −ηdUBi , then di(t) = 0, thus Bi(t + 1) ≥ Bi(t), and Bi(t + 1) ≤ −ηdUBi + ηcci ≤

bi − bi − ηdpiV + ηcci.
Therefore, Bi(t+ 1) is within the same area as Bi(t).

From all above, it can be concluded that (34) holds for t ∈ T provided that V satisfies (27).

APPENDIX D
PROOF OF LEMMA 2
Proof. It is true that (31a) holds for t = 1. Suppose that (31a) holds at t, then we only need to show that it also hold at t+ 1.
We discuss the situation of qBi (t+ 1) according to the following two cases:
(1) If qBi (t) ≤ V pi, from (2) we know that queue qBi (t) grows up at most MB

i in a single time slot, thus qBi (t + 1) ≤
V pi +MB

i ;
(2) If V pi < qBi (t) ≤ V pi +MB

i , we write the LPM problem of the ith DC as:

LPMi : min gi(t)

s.t. (7)− (10),
xi(t) + di(t)− ci(t) ≤ S1, (λai )

xi(t) + di(t)− ci(t) ≥ 0 (λbi )

where S1 = min{qBi (t) +
∑
j∈ΩBi

mji(t), Ei} and (7)-(10) is only for t and i. Let λai and λbi be the Lagrangian multipliers
associated with the corresponding constraints. The primal-dual optimizer (xi(t), λ

a
i , λ

a
i ) complies with the following KKT

conditions:

V pi − qBi (t)− zBi (t) + λai − λbi = 0; (35a)

λai ≥ 0, λbi ≥ 0; (35b)
(xi(t) + di(t)− ci(t)− S1)λai = 0; (35c)

(xi(t) + di(t)− ci(t)− S1)λbi = 0. (35d)

It is clear that λai = qBi (t) + zBi (t) − V pi + λbi > 0. Therefore, it can be derived from (35c) and (11) that ei(t) = xi(t) +
di(t)− ci(t) = S1. If ei(t) = S1 = qBi (t) +

∑
j∈ΩBi

mji(t), then qBi (t+ 1) = 0; If ei(t) = S1 = Ei, then qBi (t+ 1) ≤ qBi (t) ≤
V pi +MB

i .
Here we complete the proof of (31a), and similarly (31b) and (31c) can be proved. The proof of (31d) and (31e) is roughly

the same as the above, following the mathematical induction fashion. Therefore, we omit the main body of the proof and
only prove that when

qFj (t) > V αj +QB,j , (36)∑
i∈ΩFj

mji(t) = min{qFj (t) + aj(t),M
F
j } , S2 must hold, which indicates that when the workload backlogged at the MN

exceeds a threshold, the MN will process the workload at a largest possible rate.
The network workload routing problem for MN j is

NWRj : min
∑
i∈ΩFj

gij(t)

s.t. −mji(t) ≤ 0,∀i ∈ ΩFi (λli)

mji(t) ≤Mji,∀i ∈ ΩFj (λri )∑
i∈ΩFj

mji(t) ≤ S2 (λ)
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Let λli, λ
r
i and λ be the Lagrangian multipliers associated with the three constraints. The primal-dual optimizer

(mji(t), λ
l
i, λ

r
i , λ) complies with the following KKT conditions:

V αji + qBi (t)− qFj (t)− zFj (t)− λli + λri + λ = 0; (37a)

mji(t) ≥ 0,mji(t) ≤Mji,
∑
i∈ΩFj

mji(t) ≤ S2; (37b)

λli ≥ 0, λri ≥ 0, λ ≥ 0; (37c)

λlimji(t) = 0, λri (mji(t)−Mji) = 0; (37d)

λ(
∑
i∈ΩFj

mji(t)− S2) = 0. (37e)

We discuss these conditions in two cases:
(1) λ > 0: because of (37e),

∑
i∈ΩFj

mji(t) = S2 must hold.

(2) λ = 0: (37a), (37c) and (36) lead to λri > 0, which together with (37d) results in mji(t) = Mji,∀i ∈ ΩFj . Therefore,∑
i∈ΩFj

mji(t) = MF
j holds considering the fact that MF

j ≤
∑
i∈ΩFj

Mji.

APPENDIX E
PROOF OF LEMMA 3
Proof. Assume Bi(t) ≥ − 1

rηcV pi and ci(t) > 0. Suppose the best possible amount of power drawn from the grid is xi(t)
given ci(t) > 0, then the corresponding cost gi(t) satisfies:

gi(t) ≥V pi(t)xi(t)− V pici(t)
+[qBi (t) + zBi (t)][−xi(t) + ci(t)] + V βcONi (t)

≥[V pi(t)− qBi (t)− zBi (t)][xi(t)− ci(t)] + V βcONi (t)

where the right hand side of the second inequality is exactly the cost if xi(t) − ci(t) electricity is bought from the grid.
Therefore, when Bi(t) ≥ − 1

rηcV pi, ci(t) = 0 must hold.
Assume Bi(t) ≤ − 1

rη
dUBi and di(t) > 0. Suppose the best possible amount of power drawn from the grid is xi(t)

given di(t) > 0, then the corresponding cost gi(t) satisfies:

gi(t) ≥[V pi(t)− qBi (t)− zBi (t)]xi(t)

+[QZBi − qBi (t)− zBi (t)]di(t)

≥[V pi(t)− qBi (t)− zBi (t)]xi(t)

where the right hand side of the second inequality is exactly the cost if xi(t) electricity is bought from the grid and no
electricity is discharged. Therefore, when Bi(t) ≤ − 1

rη
dUBi , di(t) = 0 must hold.
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