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Abstract

Online reinforcement learning (RL) typically
requires online interaction data to learn a
policy for a target task, but collecting such
data can be high-stakes. This prompts inter-
est in leveraging historical data to improve
sample efficiency. The historical data may
come from outdated or related source envi-
ronments with different dynamics. It remains
unclear how to effectively use such data in
the target task to provably enhance learning
and sample efficiency. To address this, we
propose a hybrid transfer RL (HTRL) set-
ting, where an agent learns in a target en-
vironment while accessing offline data from
a source environment with shifted dynam-
ics. We show that – without information on
the dynamics shift – general shifted-dynamics
data, even with subtle shifts, does not re-
duce sample complexity in the target envi-
ronment. However, focusing on HTRL with
prior information on the degree of the dy-
namics shift, we design HySRL, a transfer
algorithm that outperforms pure online RL
with problem-dependent sample complexity
guarantees. Finally, our experimental results
demonstrate that HySRL surpasses the state-
of-the-art pure online RL baseline.

1 Introduction

In online reinforcement learning (RL), an agent learns
by continuously interacting with an unknown environ-
ment. While this approach has led to remarkable suc-
cesses across various domains, such as robotics (Es-
peholt et al., 2018), traffic control (He et al., 2023)
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and game playing (Silver et al., 2017), it often re-
quires billions of data from interactions to develop an
effective policy (Li et al., 2023b). Moreover, in many
real-world scenarios, such interactions can be costly,
time-consuming, or unsafe (Eysenbach et al., 2021),
which significantly limits the broader application of
RL in practice, highlighting the urgent need for more
sample-efficient paradigms.

One promising direction to address sample inefficiency
in RL is transfer learning (Zhu et al., 2023). When de-
veloping an effective policy for a target environment, it
is often possible to leverage experiences from a similar
source environment with shifted dynamics (Niu et al.,
2024). These sources may include an imperfect simu-
lator (Peng et al., 2018), historical operating data be-
fore external impacts (Luo et al., 2022), polluted offline
datasets (Wang et al., 2023), or data from other tasks
in a multi-task setting (Sodhani et al., 2021). This con-
cept has led to various domains and pipelines, such as
meta RL (Finn et al., 2017), cross-domain RL (Eysen-
bach et al., 2021; Liu et al., 2022), and distributionally
robust RL (Shi et al., 2023), which demonstrate vary-
ing levels of effectiveness.

Despite recent practical progress, there are still no
clear indications on how to perform transfer learning
in a sample-efficient manner with guarantees. While
some studies show that using shifted dynamics data
can reduce the time required to achieve specific per-
formance levels in the target environment (Liu et al.,
2022; Serrano et al., 2023; Zhang et al., 2024a), others
indicate that sometimes these transfers hinder rather
than help learning (Ammar et al., 2015; You et al.,
2022), a phenomenon known as negative transfer.

These practical challenges highlight the need for theo-
retical insights, which have not been addressed in ex-
isting frameworks. Recently, a new stream of research
called hybrid RL (Xie et al., 2021) has emerged, show-
ing that, theoretically, an offline dataset with no dy-
namics shift can facilitate more efficient online explo-
ration. However, when the dataset is collected from
a source environment with shifted dynamics, it re-
mains unclear whether this dataset can still enable
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more sample-efficient learning in the target environ-
ment. This brings us an interesting open question:

Can data from a shifted source environment
be leveraged to provably enhance sample ef-
ficiency when learning in a target environ-
ment?

To answer this question, we formulate a problem called
hybrid transfer RL (HTRL), where an agent aims to
learn an optimal policy for the target environment
with minimal interactions, while having access to an
offline dataset collected from a shifted source envi-
ronment. The source and target environments differ
in their environmental transition uncertainties (Doshi-
Velez and Konidaris, 2013), which are typically un-
known before exploring the target environment and
thus refer to as an unknown dynamics shift.

Contributions. In this work, we propose a hybrid
transfer RL setting, where the source and target envi-
ronments share the same world structure, but differ-
ing in their dynamic transitions. We first investigate
the inherent difficulty of general hybrid transfer RL by
providing a minimax lower bound on the required sam-
ple complexity, and then demonstrate provable sample
efficiency gains from the source environment dataset
when additional prior information is available. To the
best of our knowledge, we are the first to theoretically
study the sample complexity of this transfer setting.
Specifically:

• We formulate and focus on a new setting called hy-
brid transfer RL (HTRL). We find that, even with a
subtle dynamics shift between the target MDP and
the source MDP, datasets from the source MDP gen-
erally cannot reduce the sample complexity required
for the target MDP without additional conditions,
compared to state-of-the-art online RL sample com-
plexity (Theorem 1). This result demonstrates that
general HTRL is not feasible, motivating us to focus
on more practical yet meaningful settings.

• We study HTRL with prior knowledge of the degree
of the dynamics shift. We design a transfer algo-
rithm, HySRL, which achieves problem-dependent
sample complexity at least as good as state-of-
the-art online methods, providing sample efficiency
gains in many practical and meaningful scenarios
(Theorem 2). The key technical contributions in-
volve extending the current reward-free and bonus-
based exploration techniques to accommodate more
general rewards and incorporating shifted-dynamics
data into the analysis. In addition, we conduct ex-
periments in the GridWorld environment to evaluate
the proposed algorithm HySRL, demonstrating that
HySRL achieves superior sample efficiency than the

state-of-the-art pure online RL baseline.

1.1 Related work

Finite-sample analysis of online, offline, and
hybrid RL. Finite sample analysis in RL focuses
on understanding the sample complexity – how many
samples are required to achieve a desired policy with
certain performance. In this line of research, a non-
exhaustive list in online RL includes Dong et al.
(2019); Zhang et al. (2021, 2020a); Jafarnia-Jahromi
et al. (2020); Liu and Su (2021); Yang et al. (2021);
Azar et al. (2017); Jin et al. (2018); Bai et al. (2019);
Zhang et al. (2020b); Menard et al. (2021); Domingues
et al. (2021b); He et al. (2021); Zanette and Brun-
skill (2019); Li et al. (2023a); Zhang et al. (2024b),
while offline RL has seen advances such as Uehara
et al. (2020); Li et al. (2014); Yang et al. (2020); Duan
et al. (2020); Jiang and Li (2016); Jiang and Huang
(2020); Kallus and Uehara (2020); Duan et al. (2021);
Xu et al. (2021); Ren et al. (2021); Panaganti et al.
(2025); Thomas and Brunskill (2016); Shi et al. (2022);
Li et al. (2024a); Woo et al. (2024), and hybrid RL
frameworks are explored in Song et al. (2023); Xie et al.
(2021); Zhang and Zanette (2023); Li et al. (2024b).
The most closely related setting is hybrid RL, in which
an agent learns in a target environment with access to
an offline dataset collected from the same environment.
Our work extends hybrid RL by addressing cases where
the offline dataset may come from an outdated or re-
lated environment with shifted dynamics relative to
the target environment.

Transfer RL with dynamics shifts. One closely
related setting is cross-domain RL with dynamics
shifts, focusing on leveraging abundant samples from
a source environment to reduce data requirements for
a target environment (Eysenbach et al., 2021; Liu
et al., 2022; Niu et al., 2022, 2023; Chen et al., 2024;
Wen et al., 2024). To address the dynamics shift be-
tween the source and target environments, existing
approaches often involve training a classifier to dis-
tinguish between source and target transitions, com-
bined with techniques such as combining source and
target datasets for policy training (Wen et al., 2024;
Chen et al., 2024), and reshaping rewards by intro-
ducing a penalty term for dynamics shifts (Eysenbach
et al., 2021; Liu et al., 2022). While these methods
show promising empirical performance, a systematic
study on sample complexity is missing. Our work fills
this gap by offering a novel theoretical perspective on
cross-domain RL.

Other related transfer RL settings include distribu-
tionally robust offline RL (Zhou et al., 2021; Pana-
ganti and Kalathil, 2022; Xu et al., 2023; Panaganti
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et al., 2022, 2024; Shi et al., 2023; Wang et al., 2024;
Ma et al., 2023; Liu and Xu, 2024; Shi and Chi, 2024),
which focuses on training a robust policy using only
an offline dataset, without further exploration, to op-
timize performance in the worst-case scenario of the
target environment. Another area, meta RL (Finn
et al., 2017; Duan et al., 2016; Wang et al., 2017; Chen
et al., 2022; Ye et al., 2023; Mutti and Tamar, 2024),
trains an agent over a distribution of environments to
enhance generalization capabilities. Our work con-
tributes to distributionally robust offline RL by ad-
dressing the sample complexity when exploration in
the target environment is allowed and complements
meta RL by focusing on scenarios where the target
environment lies outside the training distribution.

Notation. We denote by [n] the set {1, · · · , n} for
any positive integer n, and use 1 {·} to represent the
indicator function. For a function f defined on S, we
define its expectation under the probability measure
p as pf ≜ Es∼pf(s) and its variance as Varp(f) ≜
Es∼p(f(s)−Es′∼pf(s

′))2 = p(f−pf)2. The total vari-
ation distance between probability measures p and q
is defined as TV(p, q) ≜ supA⊆S |p(A) − q(A)|. We
use standard O(·) and Ω(·) notation, where f = O(g)
means there exists some constant C > 0 such that
f ≤ Cg (similarly for Ω(·)), and use the tilde notation
Õ(·) to suppress additional log factors. We denote the
cardinality of a set X by |X |.

2 Hybrid Transfer RL

We begin by introducing the mathematical formula-
tion of HTRL, benchmarking with standard online RL.

AgentSource env

Offline data

Rollout

Online data

Target env

Hybrid Transfer RL (our setting)

AgentTarget env

Offline data

Rollout

Online data
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Hybrid RL

Agent Rollout
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Figure 1: Comparison between different RL settings

Background: Markov decision process (MDP).
We consider episodic Markov Decision Process M =
(S,A, H, p, r, ρ), where S is the state space with size

S, A is the action space with size A, H is the hori-
zon length. p(· | s, a) : S × A 7→ ∆(S) denotes the
time-independent transition probability at each step,
and the reward function is deterministic1, given by
r : S × A 7→ [0, 1]. In this setting, a Markovian pol-
icy is given by π := {πh}Hh=1 where πh : S 7→ ∆(A).
Additionally, we assume that each episode of the MDP
starts from an initial state generated from an unknown
distribution ρ ∈ ∆(S), namely, s1 ∼ ρ.

For a given transition p, the value function for state
s at step h is defined as the expected cumulative fu-
ture reward by executing policy π, which is given by
V p,π
h (s) := Ep,π[

∑H
i=h r(si, ai) | sh = s]. Similarly,

the action-value function, or Q-function, is defined as
Qp,π

h (s, a) = Ep,π[
∑H

i=h r(si, ai) | sh = s, ah = a]. We
denote the expected value function of π with ρ as the
initial state distribution by:

V p,π
1 (ρ) = Es∼ρ[V

p,π
1 (s)].

As is well known, there exists at least one deterministic
policy that maximizes the value function and the Q-
function simultaneously for all (s, a, h) ∈ S ×A× [H]
(Bertsekas, 2007). Let π⋆ denote an optimal deter-
ministic policy, and the corresponding optimal value
function V ⋆

h and optimal Q-function Q⋆
h are defined re-

spectively by V p,⋆
h ≜ V p,π⋆

h , Qp,⋆
h ≜ Qp,π⋆

h , ∀(s, a, h) ∈
S ×A× [H].

2.1 Hybrid Transfer RL

In HTRL, the agent can interact with the target MDP
Mtar = (S,A, H, ptar, r, ρ) in a online manner. Specif-
ically, in each episode, at each step h ∈ [H], the agent
observes a state sh ∈ S, chooses an action ah ∈ A,
receives a reward r(sh, ah) and transitions to the next
state sh+1 at time step h+ 1, according to the under-
lying transition probability ptar(· | sh, ah), and so on
so force.

Additionally, the agent has access to an offline dataset
Dsrc = {(si, ai, ri, s′i)} pre-collected from a source
MDP Msrc = (S,A, H, psrc, r, ρ). The target and
source MDPs share the same structure except for the
transition probabilities (i.e. ptar ̸= psrc). For simplic-
ity, we assume the reward signals in Msrc and Mtar

are the same; however, our analysis still holds when
the reward signals differ. We assume psrc and ptar are
both unknown to the agent.

Goal. With access to both Dsrc and Mtar, the goal
in HTRL is to find an ε-optimal policy for Mtar with
minimal online interactions with Mtar. Specifically,

1For simplicity, we consider deterministic rewards, as
estimating rewards is not a significant challenge in deriving
sample complexity results.
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the agent aims to find a policy π̂ for Mtar, which sat-
isfies that:

V ptar,⋆
1 (ρ)− V ptar,π̂

1 (ρ) ≤ ε.

Benchmarking with standard online RL. On-
line RL is a popular setting in which the agent learns
from scratch by directly interacting with Mtar in
episodes of length H. Different from HTRL, in on-
line RL, the agent does not have the access to an
offline dataset as additional information. Therefore,
compared to online RL, the introduction of additional
access to Dsrc in HTRL naturally raises the question:
can we achieve better sample efficiency by leveraging
Dsrc? The answer is negative in general but poten-
tially positive in many practical settings, which will
be highlighted in the next two sections.

3 Minimax Lower Bound For HTRL

In this section, we establish a minimax lower bound
on the sample complexity for general HTRL, formally
demonstrating that sample complexity improvements
for general HTRL are not feasible even with subtle
shift.

Specifically, when ptar is close to psrc, one might expect
that fewer samples from Mtar are needed to reach a
given performance level by leveraging additional infor-
mation about Msrc (Lobel and Parr, 2024, Section B).
However, as demonstrated in Theorem 1, in the worst
case, it still requires samples of same order from Mtar

as in pure online RL. The proof of this theorem can
be found in the full version Qu et al. (2024).

Theorem 1 (Minimax lower bound for HTRL). Sup-
pose S ≥ 3, H ≥ 3, A ≥ 2, ε ≤ 1/48. Consider any
Msrc and define the following set of possible MDPs:

Mα ≜ {M = (S,A, H, p, r, ρ) |
max

(s,a)∈S×A
TV(p(· | s, a), psrc(· | s, a)) ≤ α},

where 48ε/H2 ≤ α ≤ 1. For any algorithm, there
exists a Msrc and a target MDP Mtar ∈ Mα, if the
number of samples n collected from the target MDP
satisfies n ≤ O(H3SA/ε2), then the algorithm suffers
from an ε-suboptimality gap:

Etar

[
V ptar,⋆
1 (ρ)− V ptar,π̂

1 (ρ)
]
≥ ε,

where Etar denotes the expectation with respect to the
randomness during algorithm execution in the target
MDP Mtar.

Theorem 1 shows that the lower bound of sample
complexity of general HTRL is Ω(H3SA/ε2), which

matches the state-of-the-art sample complexity of pure
online RL, Õ(H3SA/ε2) (e.g., Ménard et al. (2021)2;
Wainwright (2019)). This demonstrates that, in gen-
eral, practical transfer algorithms leveraging source en-
vironment data cannot reduce the sample complexity
in the target environment. No matter what algorithms
are used, there always exists a worst case where trans-
fer learning cannot achieve better sample efficiency in
the target environment, compared to pure online RL.
That said, this lower bound is conservative, motivating
us to explore practically meaningful and feasible set-
tings to derive problem-dependent sample complexity
bounds.

Comparisons to prior lower bounds. To the best
of our knowledge, this is the first lower bound on the
sample complexity when leveraging information from
a source environment to explore a new target environ-
ment with an unknown dynamics shift. We highlight
the novelty of our lower bound result by comparing it
with prior lower bounds:

Lower bounds for transfer in RL: O' Donoghue (2021);
Ye et al. (2023); Mutti and Tamar (2024) provide lower
bounds on regret in settings where the agent is trained
on N source tasks and is fine-tuned to the target task
during testing. However, these lower bounds cannot
be adapted to our setting as they assume the target
task is one of the source tasks – which is stronger than
ours.

Lower bounds for pure online RL: The existing lower
bound on the sample complexity of pure online RL
is also Ω(H3SA/ε2) (Gheshlaghi Azar et al., 2013).
This demonstrates that the improvement in the sam-
ple complexity lower bound from the introducing ad-
ditional information from a source environment is at
most a constant factor. The construction of the lower
bound for HTRL follows a procedure similar to exist-
ing lower bounds for online RL (Lattimore and Hut-
ter, 2012; Yin et al., 2020), offline RL (Rashidinejad
et al., 2021) and hybrid RL without dynamics shift
(Xie et al., 2021). However, the new technical chal-
lenge in our setting is to bound the maximum infor-
mation gain of the data from Msrc. We address this
difficulty using a proper change-of-measure approach.

4 HTRL with Separable Shift

Although improved sample efficiency is not achievable
for general HTRL in the worst case, practical tasks
are typically more manageable than these difficult in-

2Ménard et al. (2021) considers time-dependent tran-
sitions and the sample complexity result is Õ(H4SA/ε2),
which in our setting translates into Õ(H3SA/ε2) due to
time-independent transitions.
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stances. Inspired by practical tasks such as hierarchi-
cal RL (Chua et al., 2023) and meta RL (Chen et al.,
2022), we instead focus on a class of HTRL with sep-
arable shift in the following. This setting allows us
to leverage prior information about the degree of dy-
namics shift between the source and target environ-
ments. We then propose an algorithm, called HySRL,
which achieves provably superior sample complexity
compared to pure online RL.

4.1 β-separable shfits

We first introduce the definition of separable shift,
characterized by the minimal degree of the dynamics
shift between the source and target environments.

Definition 1 (β-separable shift). Consider a target
MDP Mtar = (S,A, H, ptar, r, ρ) and a source MDP
Msrc = (S,A, H, psrc, r, ρ). The shift between Mtar

and Msrc is β-separable if for some β ∈ (0, 1], we have
for all (s, a) ∈ S ×A,

psrc(· | s, a) ̸= ptar(· | s, a)
=⇒ TV(psrc(· | s, a), ptar(· | s, a)) ≥ β.

In other words, for any state-action pair (s, a), the
transitions in Msrc and Mtar are either identical or
different by at least the degree of β w.r.t the TV dis-
tance metric. This definition is widely used to char-
acterize the "distance" between tasks in hierarchical
RL (Chua et al., 2023), RL for latent MDPs (Kwon
et al., 2024), multi-task RL Brunskill and Li (2013),
and meta RL (Mutti and Tamar, 2024; Chen et al.,
2022), serving the purpose of distinguishing different
tasks with finite samples in practice.

Such a minimal degree of dynamic shift, β, can of-
ten be estimated beforehand as prior information for
specific problems in practice (Brunskill and Li, 2013).
Therefore, in this section, we design algorithms under
the assumption that ptar and psrc are β-separable.

Remark 1 (Separable shift makes HTRL feasible).
The lower bound in Theorem 1 arises from potential
challenging target MDPs that subtly differ from the
source MDP, with a small "distance" associated with
the required optimality gap ε. This subtlety requires
extensive data to distinguish between them. However,
in practice, the dynamics shift between source and tar-
get environments, characterized by β, is typically inde-
pendent of ε. Therefore, we focus on HTRL with a β-
separable shift, excluding over-conservative instances
that are rare in practice.

In addition to the aforementioned key definition —
β-separable dynamics shifts, we introduce another as-
sumption for the reachability of the target MDP. Note

that it is not tailored for our Hybrid Transfer RL set-
ting, but widely adopted in extensive RL tasks such
as standard RL, meta RL and multi-task RL (Jaksch
et al., 2010; Chen et al., 2022; Brunskill and Li, 2013),
to ensure the problems are well-posed with agent’s ac-
cess to the entire environment (over all state-action
pairs).
Assumption 1 (σ-reachability). We assume the tar-
get MDP Mtar has σ-reachability if there exists a con-
stant σ ∈ (0, 1] so that

max
π

max
h∈[H]

dπh(s, a) ≥ σ, ∀(s, a) ∈ S ×A,

where dπh(s, a) is the probability of reaching (s, a) at
step h by executing policy π in Mtar.

4.2 Algorithm design: HySRL

Focusing on HTRL with β-separable shift, now we are
ready to introduce our algorithm HySRL, outlined in
Algorithm 1. To explicitly characterize the set of state-
action pairs where psrc and ptar differ, we introduce the
following definition.
Definition 2 (Shifted region). We define the shifted
region B as the set of state-action pairs where the tran-
sitions in Msrc and Mtar differ:

B ≜
{
(s, a) ∈ S ×A | psrc(· | s, a) ̸= ptar(· | s, a)

}
.

Although ptar is unknown in advance, it is possible
to invest a small number of online samples to estimate
ptar and identify the shifted region B. This helps deter-
mine which part of Dsrc can improve sample efficiency
in Mtar, allowing us to focus further exploration on
the remaining areas to learn an effective policy. Since,
in many practical applications, the dynamcis shift typ-
ically affects only a small portion of the state-action
space (Chua et al., 2023), this approach can enable
more sample-efficient exploration in Mtar. This intu-
ition drives the design of Algorithm 1.

Algorithm 1: Hybrid separable-transfer RL
(HySRL). At a high level, given a desired optimal-
ity gap ε, if the reachability σ and the minimal shift
level β is relatively small – implying that an excessive
number of samples is required to identify the shifted re-
gion – Algorithm 1 chooses to ignore the offline dataset
and instead relies on pure online learning. Otherwise,
we proceed as follows: first, we run Algorithm 2 to ob-
tain an estimated shifted region B̂, which, with high
probability, matches the true shifted region B. Next,
in Algorithm 3, we further enhance exploration of B̂ by
designing exploration bonuses that combine both the
offline dataset Dsrc and online data, ultimately yield-
ing a final policy for Mtar. Below, we outline the key
steps of Algorithm 1.
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Algorithm 1 Hybrid separable-transfer RL
Require: Shift level β, confidence level δ, reachability

σ, desired optimality gap ε, source dataset Dsrc

1: if β ≤
√

S/Hε/σ then
2: // If the shift is relatively hard to identify
3: Set the estimated shifted region B̂ as S ×A
4: // Abandon Dsrc

5: else
6: Execute Algorithm 2 to identify and estimate

shifted region B̂
7: end if
8: Execute Algorithm 3 with B̂ to get πfinal

9: // Collect data for B̂ and learn the policy through
value iteration

10: return πfinal

Step 1: Reward-free shift identification (Algo-
rithm 2). Even with knowledge of β and σ, accu-
rately estimating ptar to identify the shifted region B
is still challenging, as we need to control the errors
in estimating high-dimensional transitions with finite
samples.

Algorithm 2 Reward-free shift identification
Require: Shift level β, confidence level δ, reachability

σ, source dataset Dsrc

1: for t = 0, 1, 2, · · · do
2: for h = H, · · · , 1 do
3: Update W t

h using Eq. (1)
4: Update πt+1

h (·) = argmaxa∈A W t
h(·, a)

5: end for
6: Break if 3

√
Eρ,πt+1

1
[W t

1 ] +Eρ,πt+1
1

[W t
1 ] ≤ σβ/8

7: // sufficient data coverage is achieved
8: Rollout πt+1 and observe new online samples
9: for (s, a) ∈ S ×A do

10: Update visitation counts nt(s, a), nt(s, a, s′)
and empirical transitions p̂ttar(· | s, a)

11: end for
12: end for
13: return Estimated shifted area B̂ by Eq. (2)

To this end, sufficient online data coverage is required
for each (s, a), which aligns with the motivation behind
reward-free exploration to collect enough data and
achieve optimality for any reward signal r : S × A 7→
[0, 1]. Inspired by RF-Express from Ménard et al.
(2021), we propose Algorithm 2. Specifically, we first
define an uncertainty function W t

h(s, a), which char-
acterizes data sufficiency until the tth episode, recur-
sively (with W t

H+1(s, a) = 0) for all h ∈ [H] and

(s, a) ∈ S ×A,

W t
h(s, a) ≜ min

(
1,

4Hg1(n
t(s, a), δ)

nt(s, a)

+
∑
s′

p̂ttar(s
′ | s, a)max

a′∈A
W t

h+1(s
′, a′)

)
,

(1)

where g1(n, δ) ≜ log(6SAH/δ) + S log(8e(n + 1)),
nt(s, a) ≜

∑t
τ=1

∑H
h=1 1 {(sτh, aτh) = (s, a)} denotes

the visitation count for (s, a) in the first t episodes
and p̂ttar(s, a) denotes the corresponding empiri-
cal transitions. Accordingly, we select πt+1

h (·) =
argmaxa∈A W t

h(·, a) to collect online data from Mtar,
update nt(s, a), p̂ttar(s, a) and W t

h(s, a), and stop until:

3
√
Eρ,πt+1

1
[W t

1 ] + Eρ,πt+1
1

[W t
1 ] ≤ σβ/8,

where Eρ,πt+1
1

[W t
1 ] =

∑
s ρ(s)W

t
1(s, π

t+1
1 (s)). This

stopping criterion is designed to ensure that sufficient
data coverage is achieved when Algorithm 2 stops. Be-
yond reward-free exploration, our design further guar-
antees the confidence intervals

TV(ptar(· | s, a), p̂ttar(· | s, a)) ≤ β/4

is constructed for each (s, a), which is verified by
Lemma 1. Then, we estimated the shifted region as:

B̂ ≜
{
(s, a) ∈ S ×A |
TV(p̂src(· | s, a), p̂ttar(· | s, a)) > β/2

}
, (2)

where p̂src is the empirical transitions in Dsrc, defined
with the visitation count nsrc in Dsrc:

p̂src(· | s, a) ≜
nsrc(s, a, ·)
nsrc(s, a)

, ∀(s, a) ∈ S ×A.

We show that by executing Algorithm 2, the shifted
region B can be identified with high probability within
a sample size from Mtar that is independent of ε, as
formally stated in Lemma 1. The proof of Lemma 1
can be found in the full version Qu et al. (2024).
Lemma 1 (Sample-efficient shift identification).
When Assumption 1 holds and δ ∈ (0, 1), suppose
the shift between Mtar and Msrc is β-separable, and
Dsrc contains at least Ω̃(S/β2) samples for ∀(s, a) ∈
S × A. With probability at least 1− δ/2, applying Al-
gorithm 2 until Õ(H2S2A/(σβ)2) samples are collected
from Mtar, the estimated empirical transition p̂ttar sat-
isfies

TV(ptar(· | s, a), p̂ttar(· | s, a)) ≤ β/4, ∀(s, a) ∈ S ×A,

and the estimated shifted region B̂ = B.

The confidence interval for transitions with finite-
sample guarantees in Lemma 1 is estabilished by ex-
tending reward-free exploration to accomodate more
general reward functions r : [H] × S × A × S 7→ [0, 1]
in the analysis.
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Step 2: Hybrid UCB value iteration (Algo-
rithm 3). Once we have the estimated shifted re-
gion B̂, it is intuitive for the agent to focus more on
exploring the estimated shifted region B̂. To achieve
this, we introduce Algorithm 3 that incorporates the
additional source dataset Dsrc in the design of the ex-
ploration bonus.

Algorithm 3 Hybrid UCB value iteration
Require: Shift level δ, desired optimality gap ε, esti-

mated shifted region B̂, source dataset Dsrc

1: for t = 0, 1, 2, · · · do
2: for h = H, · · · , 1 do
3: Update upper confidence bounds Q

t

h, Gt
h us-

ing Eqs. (3a) and (4)
4: Update πt+1

h (·) = argmaxa∈A Q
t

h(·, a)
5: end for
6: Break if Eρ,πt+1

1
[Gt

1] ≤ ε

7: // ε-optimality is achieved
8: Rollout πt+1 and observe new online samples
9: for (s, a) ∈ B̂ do

10: Update visitation counts nt(s, a), nt(s, a, s′)
and empirical transitions p̂ttar(· | s, a)

11: // Only update nt and p̂ttar inside B̂
12: end for
13: end for
14: return πfinal = πt+1

This algorithm is inspired by BPI-UCBVI in Ménard
et al. (2021); however, in our problem, we carefully
design the exploration bonus to leverage the addi-
tional offline dataset Dsrc while controlling potential
bias that it introduces. To effectively use Dsrc while
avoiding potential bias, we define the upper confidence
bounds of the optimal Q-functions and value functions
for the estimated shifted region B̂ and its complement
S ×A / B̂, respectively:

Q
t

h(s, a) ≜ min

(
H, r(s, a) +

14H2g1(ñ
t(s, a), δ)

ñt(s, a)

+ 3

√
Varp̃t(V

t

h+1)(s, a)
g2(ñt(s, a), δ)

ñt(s, a)
(3a)

+
1

H
p̃t(V

t

h+1 − V t
h+1)(s, a) + p̃tV

t

h+1(s, a)

)
,

V
t

h(s) ≜ max
a∈A

Q
t

h(s, a), V
t

H+1(s) ≜ 0, (3b)

where g2(n, δ) ≜ log(6SAH/δ) + log(8e(n+ 1)), V t
h+1

is the lower bounds of the optimal value functions de-
fined similarly, which can be found in the full version
Qu et al. (2024). and Varp̃t(·) denotes the empirical
variance under p̃t. Here, for each (s, a) ∈ S ×A,

• If (s, a) ∈ B̂, then we choose ñt(s, a) = nt(s, a)
and p̃t(· | s, a) = p̂ttar(· | s, a);

• If (s, a) /∈ B̂, then we choose ñt(s, a) = nsrc(s, a)
and p̃t(· | s, a) = p̂src(· | s, a).

Aiming to achieve optimality in Mtar, we choose
πt+1
h (·) = argmaxa∈A Q

t

h(·, a) to collect samples from
Mtar in Algorithm 3. Accordingly, we define the
following function Gt

h(s, a) to serve as an upper
bound on the optimality gap V ptar,⋆

h −V ptar,π
t+1

h (with
GH+1(s, a) = 0):

Gt
h(s, a) ≜ min

(
H,

35H2g1(ñ
t(s, a), δ)

ñt(s, a)

+ 6

√
Varp̃t(V

t

h+1)(s, a)
g2(ñt(s, a), δ)

ñt(s, a)

+ (1 +
3

H
)p̃tπt+1

h+1G
t
h+1(s, a)

)
,

(4)

Algorithm 3 stops when Eρ,πt+1
1

[Gt
1] ≤ ε, indicating

that ε-optimality is achieved in the target domain
Mtar. This procedure requires at most Õ(H3|B|/ε2)
samples from Mtar, as detailed in the final results in
the next section.

4.3 Theoretical guarantees: sample
complexity

In this subsection, we discuss the total sample com-
plexity of Algorithm 1, highlighting its sample effi-
ciency gains compared to the state-of-the-art pure on-
line RL sample complexity and connections to practi-
cal transfer algorithms. The proof of Theorem 2 can
be found in the full version Qu et al. (2024).

Theorem 2 (Problem-dependent sample complexity).
Let Assumption 1 hold, and δ ∈ (0, 1) and ε ∈ (0, 1] be
given. Suppose the shift between Mtar and Msrc is β-
separable, and Dsrc contains at least Ω̃(H3/ε2+S/β2)
samples for all (s, a) ∈ S×A. With probability at least
1− δ, the output policy πfinal of Algorithm 1 satisfies

V ptar,⋆
1 (ρ)− V ptar,π

final

1 (ρ) ≤ ε, (5)

if the total number of online samples collected from
Mtar is

Õ

(
min

(
H3SA

ε2
,
H3|B|
ε2

+
H2S2A

(σβ)2

))
. (6)

Theorem 2 provides a problem-dependent sample com-
plexity of Algorithm 1 that is at least as good as the
state-of-the-art Õ(H3SA/ε2) in pure online RL (Mé-
nard et al., 2021; Wainwright, 2019), and improves
upon it when the dynamics shift degree β is relatively
large. Specifically, for a given β:
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• When β < Ω(
√
S/H · ε/σ): it captures the sce-

narios where the minimal degree of the dynamics
shift β is smaller than the order of the desired opti-
mality gap ε, implying the difficulty of distinguish-
ing between the source and the target environments.
In this case, the sample complexity of Algorithm 1
becomes Õ(H3SA/ε2), which matches the state-of-
the-art pure online RL sample complexity, showing
that our framework provably avoids negative trans-
fer in terms of sample efficiency.

• When β ≥ Ω(
√

S/H · ε/σ): the comparisons be-
tween the sample complexity of Algorithm 1 in
Eq. (6) and the state-of-the-art pure online RL is
as follows:

Õ

(
H3|B|
ε2

)
v.s. Õ

(
H3SA

ε2

)
,

where |B| represents the cardinality of the shifted re-
gion, a problem-dependent parameter in HTRL that
is strictly no larger than SA. It indicates that Algo-
rithm 1 provably achieves better sample efficiency
than state-of-the-art pure online RL algorithms in
HTRL tasks, as long as the shift does not cover the
entire state-action space, as validated in Section 5.
In many practical scenarios, such as training cook-
ing agents (Beck et al., 2024) or autonomous driving
(Xiong et al., 2016), environmental variations be-
tween source and target environments (e.g., differ-
ent kitchen layouts or obstacle positions) typically
affect only a small portion of the state-action space,
meaning |B| ≪ SA, with a large separable shift.
This enables significant sample efficiency gains from
reusing the source dataset.

Our results demonstrate that for HTRL tasks with
β-separable shift between source and target environ-
ments, Algorithm 1 provably avoids harmful informa-
tion transfer and enhances sample efficiency compared
to pure online RL. While Algorithm 1 relies on β, we
evaluate Algorithm 1 in broader scenarios where an
inaccurate β is used, as discussed in Section 5, demon-
strating the robustness of Algorithm 1.

Connections with practical cross-domain trans-
fer algorithms. Practical algorithms for cross-
domain transfer RL often involve training a neural
network classifier to distinguish between source and
target transitions (Eysenbach et al., 2021; Liu et al.,
2022; Niu et al., 2023; Wen et al., 2024) and reusing
source data accordingly. Our sample complexity re-
sults provide theoretical insights for determining the
data collection budget in the target domain. They also
demonstrate that the estimated transition shift serves
as an effective metric for utilizing the source data and
can provably improve sample efficiency.

Extensions of Theorem 2: variants of source
data. In Theorem 2, we assume abundant samples
from the source domain, which is a common assump-
tion since we primarily focus on sample complexity
in the target domain Mtar. However, even when the
source dataset Dsrc is insufficient, similar results hold,
which can be verified directly as a corollary of Theo-
rem 2. In particular, we consider the set of state-action
pairs where Dsrc lacks sufficient samples:

C ≜
{
(s, a) ∈ S ×A | nsrc(s, a) < Ω̃(H3/ε2 + S/β2)

}
.

By adjusting the input of Algorithm 3 to B̂ ∪ C, Algo-
rithm 1 can still achieve the identical optimality with
the sample complexity as below:

Õ

(
min

(
H3SA

ε2
,
H3|B ∪ C|

ε2
+

H2S2A

(σβ)2

))
.

Similarly, when N datasets from N different source
MDPs are available, Algorithm 1 can still function by
executing Algorithm 2 once to identify the shifts in the
target transition relative to each source transition and
selecting useful source data accordingly. Let Bi de-
note the corresponding shifted region for each source
MDP i. Under the conditions of Theorem 2, the re-
quired sample complexity in this setting becomes

Õ

(
min

(
H3SA

ε2
,
H3| ∩i∈[N ] Bi|

ε2
+

H2S2A

(σβ)2

))
.

5 Experiments

We evaluate our proposed algorithm by comparing it
to the state-of-the-art online RL baseline, BPI-UCBVI
Ménard et al. (2021), in the GridWorld environment
(S = 16, A = 4, H = 20).

In the source and the target environments, the agent
may fail to take an action and go to a wrong direc-
tion. Compared with the source environment, the tar-
get environment includes three absorbing states. The
source dataset is collected by running Algorithm 2
in the source environment for T = 1 × 105 episodes
(satisfies the conditions for Dsrc in Theorem 2). We
implement both algorithms in the benchmark rlberry
(Domingues et al., 2021a), similar to Ménard et al.
(2021). The results are averaged over 5 random seeds
with a 95% confidence interval, presented in Fig. 2.
See Appendix A for details on the experiment setup.
The code is available at https://github.com/crqu/
hybrid-transfer-rl.

As shown in Fig. 2a, Algorithm 1 learns the optimal
policy for the target environment with fewer interac-
tions (samples) inside the target environment, outper-
forming the pure online RL baseline BPI-UCBVI. This

https://github.com/crqu/hybrid-transfer-rl
https://github.com/crqu/hybrid-transfer-rl
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Figure 2: Fig. 2a shows the optimality gap of HySRL
(ours) and BPI-UCBVI as the sample size varies.
Fig. 2b presents the percentage optimality gap of
HySRL (ours) and BPI-UCBVI as the true β varies.

demonstrates that transferring shifted-dynamics data
from a source environment can significantly improve
sample efficiency. To study whether exact knowledge
of β is necessary, we conduct an ablation study with
input β = 0.45, while the true β ranges from 0.05 to
0.4. As shown in Fig. 2b, even with an approximate
β that violates Definition 1, the performance degrada-
tion of the output policy from Algorithm 1 is minor
and still outperforms BPI-UCBVI within finite sam-
ples, demonstrating the robustness of our algorithm.

6 Conclusion

This paper introduces Hybrid Transfer RL, a learning
framework designed to evaluate the sample efficiency
of practical hybrid transfer algorithms. We establish a
worst-case lower bound for general HTRL, highlighting
the inherent difficulty of achieving sample efficiency
gains from shifted-dynamic source data to outperform
pure online RL in general. However, we demonstrate
that in many practical scenarios, where prior knowl-
edge of the dynamics shift degree is available, trans-
ferring shifted-dynamic data can provably reduce the
sample complexity in the target environment, provid-
ing valuable theoretical insights for practical algorithm
design.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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Supplementary Materials

A Experiment Setup

We compare our algorithm with the state-of-the-art pure online RL algorithm BPI-UCBVI in Ménard et al.
(2021) on GridWorld environment (S = 16, A = 4, H = 20). The goal is to navigate in a room to collect rewards.
In the source and the target environments, the same structure includes:

• state-action space: the state space is a 4× 4 room, and the action space is to go up/down/left/right.

• horizon: each episode has a horizon length 20.

• success probability, the agent may fail in taking an action and go to the wrong direction with uniform
probalibities. The success probability is set to be 0.95 in experiment 1.

• reward: r = 1 at state (1, 4), r = 0.1 at state (2, 3), r = 0.01 at state (3, 2), and r = 1.5 at state (3, 4). The
state (1, 4) is an absorbing state, where the agent cannot escape once steps in and the reward can only be
obtained once.

• initial state: the agent starts from state (3, 2) in each episode.

Compared with the source environment, the target environment includes additional "traps" (absorbing states),
at states (2, 2), (2, 4) and (3, 3), where the agent cannot escape once steps in. For experiment 1 and 2, the
source dataset is collected by running Algorithm 2 in the source environment for T = 1 × 105 episodes, which
satisfies the condition in Theorem 2. For both algorithms, ε = 0.1, δ = 0.1. We re-scale the exploration bonus in
BPI-UCBVI and Algorithm 3 with the same constant 2×10−3 to mitigate the effect of the large hidden constant
within Õ(·) (similarlily for Algorithm 2 with 1×10−6). The optimality gap of a policy in the target environment
is evaluated by running the policy for 100 episodes and calculating the average the results.

For experiment 1, we run both algorithms in the target environment for T = 2 × 105 episodes to examine the
relationship between optimality gaps and the sample size from the target environment. We set β = 0.45 and
σ = 0.25 for Algorithm 1, satisfying Definition 1 and Assumption 1.

For experiment 2, we vary the success probability of taking an action in the target environment (not accounted
in the implementation of Algorithm 1) to examine the effect of maximum unidentified shift degree. The real
success probability is set from 0.9 to 0.55 with a step size 0.05. Because β is still set to be 0.45 for Algorithm 1,
the maximum unidentified shift degree (real β) ranges from 0.05 to 0.4 with a step size 0.05. For each success
probability, we run the algorithms for 5 runs, each run contains T = 1× 105 episodes.


