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Abstract— We consider decision-making problems under
decision-dependent uncertainty (DDU), where the distribution
of uncertain parameters depends on the decision variables
and is only observable through a finite offline dataset. To
address this challenge, we formulate a decision-dependent
distributionally robust optimization (DD-DRO) problem, and
leverage multivariate interpolation techniques along with the
Wasserstein metric to construct decision-dependent nominal
distributions (thereby decision-dependent ambiguity sets) based
on the offline data. We show that the resulting ambiguity
sets provide a finite-sample, high-probability guarantee that
the true decision-dependent distribution is contained within
them. Furthermore, we establish key properties of the DD-DRO
framework, including a non-asymptotic out-of-sample perfor-
mance guarantee, an optimality gap bound, and a tractable
reformulation. The practical effectiveness of our approach is
demonstrated through numerical experiments on a dynamic
pricing problem with nonstationary demand, where the DD-
DRO solution produces pricing strategies with guaranteed
expected revenue.

I. INTRODUCTION

Many real-world decision-making problems involve uncer-
tainty, where the underlying distributions are unobservable
and only accessible through limited historical data. Two
widely used approaches to handle such uncertainty are
Stochastic Programming (SP) and Distributionally Robust
Optimization (DRO). Traditional SP optimizes the expected
outcome under a fixed distribution, but can suffer from
degraded performance when deployed in practice due to
overfitting the training data, a phenomenon known as the
optimizer’s curse [1]. To mitigate this, distributionally robust
optimization (DRO) has been proposed as a more robust al-
ternative [2]–[4]. Given historical data and a robustness level,
DRO constructs an ambiguity set of plausible distributions
and optimizes for the worst-case scenario within this set,
leading to a min-max formulation. DRO has been shown,
both theoretically and empirically, to effectively reduce out-
of-sample risk and is often more tractable than the original
stochastic optimization problem, even when the true data-
generating distribution is known [5]–[8].

A. Decision-Dependent Uncertainty

In many practical problems, a further complication arises:
the distribution of the uncertain parameters depends on
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the decisions themselves—a phenomenon referred to as en-
dogenous uncertainty, or more formally, decision-dependent
uncertainty (DDU) [9]–[12]. This arises in diverse domains
including financial market modeling [13], robust network
design [14], stochastic traffic assignment [15], pricing [16],
and resource management [17]. These problems can often be
formulated as the following decision-dependent optimization
(DDO) problem:

min
x∈X

EQ(x)[h(x, ξ)], (DDO)

where x ∈ Rd is the decision variable, X denotes the
feasible region, ξ ∈ Rk is the random parameters follow-
ing a decision-dependent distribution Q(x), and h(·, ·) :
Rd × Rk 7→ R represents the objective function. Here,
R = R ∪ {±∞} denotes the extended real number. Since
Q(x) is unobservable in practice, directly solving (DDO)
is typically infeasible. Traditional SP and DRO approaches
are inadequate in this setting due to the coupled depen-
dency between the inner-layer model uncertainties and the
outer-layer optimization decisions. While [18] develops a
primal–dual method to compute fixed points for DDO in
competitive settings, it does not incorporate mechanisms for
out-of-sample robustness.

This limitation has motivated a growing body of research
that seeks to address DDO using DRO-based approaches
[19]–[23], primarily through the construction of decision-
dependent ambiguity sets. For example, [19] shows that DRO
with decision-dependent ambiguity sets can be reformulated
as min-min programs with infinitely many constraints, solv-
able via cutting-surface methods. [20] proposes tractable
reformulations based on the Earth Mover’s Distance. [23]
studies a standard DRO setting but treats the objective func-
tion as a decision-dependent random variable, which can be
interpreted as a special case of DRO for DDO. Despite these
advances, a core challenge remains: how to systematically
design decision-dependent ambiguity sets of appropriate size
while providing provable out-of-sample guarantees for the
resulting solutions.

B. Decision-Dependent DRO (DD-DRO)

To address this challenge, we introduce a novel
interpolation-based decision-dependent DRO (DD-DRO)
model that leverages multivariate interpolation and the
Wasserstein metric to construct ambiguity sets in a data-
driven, decision-aware, and robust manner. Our framework
guides practitioners in choosing the size of these ambiguity
sets based on available data and robustness requirements,



thereby avoiding overly conservative or overly optimistic
solutions.

This approach has broad practical relevance. One exam-
ple is the problem of pricing charging services at electric
vehicle charging stations (EVCSs), where demand is un-
certain, time-dependent, and responsive to prices - that is,
decision-dependent. Existing methods often rely on restric-
tive assumptions such as known demand functions [24], full
knowledge of transportation systems [25], or specific user
behaviors [26]. The literature on service pricing typically
resorts to queueing theory to model the complex system
dynamics, which is challenging even in the stationary and
static pricing setting [27], [28]. Despite growing interest, a
practical, data-driven pricing framework for EVCSs remains
lacking [25]. Our method fills this gap by enabling operators
to design pricing strategies directly from historical data and
a robustness parameter - without modeling complex system
dynamics - while still guaranteeing expected revenue. We
demonstrate the effectiveness of our approach in this context
in Section V.

C. Contributions

To the best of our knowledge, this is the first tractable
framework for decision-dependent DRO that offers non-
asymptotic guarantees on both out-of-sample performance
and optimality gap. Our contributions are summarized as
follows:

• We study optimization problems under decision-
dependent uncertainty, where the true distribution is un-
observable and accessible only via finite historical data.
We propose a novel method for constructing decision-
dependent ambiguity sets using the Wasserstein metric
and multivariate interpolation under a specified robust-
ness level.

• We provide theoretical guarantees for the out-of-sample
performance of the DD-DRO solution and establish
bounds on its optimality gap. We also show that DD-
DRO can be reformulated as a semi-infinite min-min
optimization problem, which can be solved with a
cutting-surface algorithm.

• We demonstrate the effectiveness of our method through
a dynamic pricing application, supported by numerical
experiments.

II. OVERVIEW: DECISION-DEPENDENT
DISTRIBUTIONALLY ROBUST OPTIMIZATION

As we discussed in Section I-A, directly solving (DDO) is
infeasible without the knowledge of Q(x), and in this work,
we consider the following decision-dependent distribution-
ally robust optimization (DD-DRO) problem:

min
x∈X

max
P∈P(x)

EP [h(x, ξ)], (DD-DRO)

where P(x) ⊆ M(Ξ,B(Ξ)) is the decision-dependent ambi-
guity set under the decision x. Here, B(Ξ) denotes the Borel
σ-field on Ξ and M(Ξ,B(Ξ)) is the set of all probability
measures on the measurable space (Ξ,B(Ξ)). We assume ac-
cess to a pre-collected offline dataset D = {(xn, ξn)}n∈[N ],
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(b) Available data D = {(xn, ξn)}n∈[N ] for offline learning.
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(c) The proposed DD-DRO approach, including interpolation-based nomi-
nal distribution construction for P̂N (x), decision-dependent ambiguity set
construction for P(x), and performance guarantee of (DD-DRO) solution
x̂N .

Fig. 1: Overview of the DDO problem, the available data,
and the proposed DD-DRO framework.

where [N ] denotes {1, 2, · · · , N} and each ξn are sampled
from the true but unknown distribution Q(xn). We introduce
a systematic method for constructing P(x) in Section III and
provide a non-asymptotic guarantee (see Theorem 1) on

P (Q(x) ∈ P(x), ∀x ∈ X ) ≥ 1− β,

where β ∈ (0, 1) is a prescribed confidence level.
Next, we provide performance guarantees for the solution

of (DD-DRO), including (i) the out-of-sample performance
when it is implemented under the true distribution Q(x) and
(ii) how close it is to the true optimal objective value. Let
ĴN denote the optimal value of (DD-DRO), and let x̂N be



an optimal solution. Let

JN = EQ(x̂N )[h(x̂N , ξ)].

denote the true expected out-of-sample performance of the
solution x̂N , and let J⋆ denote the optimal objective value of
the original problem (DDO). Under a shared confidence level
β ∈ (0, 1) and an error bound α(D, β) (which depends on
the dataset D and β), we establish the following guarantees
(see Theorem 2):

• Out-of-sample performance: The performance of x̂N

remains close to its estimated value when deployed in
the real environment:

P
(
|ĴN − JN | ≤ α(D, β)

)
≥ 1− β.

• Optimality gap: The true performance of x̂N is close
to the best achievable value:

P
(
|JN − J⋆| ≤ α(D, β)

)
≥ 1− β.

To support the practical implementation of DD-DRO, we
also provide a tractable reformulation of (DD-DRO) as a
min-min optimization problem (see Theorem 3). Figure 1
summarizes the DDO problem, the available offline data, our
proposed DD-DRO approach, and the associated theoretical
guarantees.

III. INTERPOLATION-BASED DD-DRO WITH
WASSERSTEIN METRIC

In this section, we formally introduce our design of the
DD-DRO framework using the Wasserstein metric and mul-
tivariate interpolation techniques. Specifically, we construct
a decision-dependent nominal distribution by interpolating
empirical distributions obtained from the offline dataset, and
define an ambiguity set centered at this nominal distribution
using the Wasserstein metric.

We begin by introducing the Wasserstein metric.
Definition 1 (L1-Wasserstein Metric [29]): Given a σ-

algebra F , for any two probability measures P1, P2 ∈
M(Ξ,F), the L1-Wasserstein distance between them is
defined as:

dW (P1, P2) ≜ inf
γ∈Γ(P1,P2)

∫
Ξ×Ξ

d(s1, s2)γ(ds1 × ds2),

where Γ(P1, P2) ≜ {γ ∈ M(Ξ × Ξ,F × F) : γ(A × Ξ) =
P1(A), γ(Ξ × A) = P2(A),∀A ∈ F} is the set of all
couplings of P1 and P2, and d(·, ·) is a F × F-measurable
metric defined on Ξ. In our setting, we assume this metric
is given by a p-norm || · ||p for p ≥ 1.

We now define the decision-dependent ambiguity sets
based on this metric. To make the dependence on the de-
cision variable x explicit, we consider a decision-dependent
nominal distribution P̂N (x) ∈ M(Ξ,B(Ξ)), and consider
ambiguity sets of forms given in Definition 2.

Definition 2: Given a radius rN > 0, a Wasserstein
distance based ambiguity set P(x) for P̂N (x) is defined as:

P(x) ≜ {P ∈ M(Ξ,B(Ξ)) | dW (P, P̂N (x)) ≤ rN}.

Directly choosing the nominal distribution as one of the
empirical distributions from the offline dataset — as is
done in standard DRO approaches [4] — is not feasible
in our setting, since these distributions do not depend on
the decision variable x. Therefore, we resort to multivariate
interpolation methods to interpolate between these empirical
measures.

Specifically, for each unique decision point xni in the
offline dataset D, we construct an empirical distribution µi

based on the observed samples of ξ. Let {xni
}i∈[Nx] be the

set of distinct decision values, and {ξmi
}i∈[Nξ] be the set

of distinct realizations of ξ in D, where Nx and Nξ are the
numbers of distinct realizations of x and ξ in the dataset,
respectively. Let 1[·] denote the indicator function. For each
xni

, define Ni ≜
∑N

n=1 1[xn = xni
], and the corresponding

empirical measure of ξ at xni
:

µi(ξ) ≜
1

Ni

∑
{n∈[N ]|xn=xni

}

δξn(ξ),

where δξn(·) denotes the Dirac measure at the sample
realization ξn. We assume X is equipped with a metric
dX (·, ·). We now define an interpolation over these empirical
distributions.

Definition 3 (Interpolation of Empirical Measures):
Given empirical measures {µi(·)}i∈[Nx] corresponding to
decisions {xni

}i∈[Nx], an interpolation of these empirical
measures is defined as:

P̂N (x) ≜
Nx∑
i=1

ωi(x)µi(·), ∀x ∈ X ,

where the weights {ωi(x)}i∈[Nx] satisfy:
ωi(x) ≥ 0, ∀i ∈ [Nx],∀x ∈ X

Nx∑
i=1

ωi(x) = 1, ∀x ∈ X ,

ωi(xni) = 1, ∀i ∈ [Nx].

In addition, we require the interpolation to be Lipschitz
continuous at each xni

with respect to the Wasserstein
distance. That is, there exists a constant c1 ≥ 0, such that
for any x ∈ X ,

dW (P̂N (x), P̂N (xni
)) ≤ c1 inf

j∈[Nx]
dX (x,xnj

).

Remark 1: Intuitively, the interpolation is defined through
a set of decision-dependent weights that vary smoothly with
respect to x and exactly recover the empirical distributions at
each observed decision point. Such an interpolation always
exists and can be efficiently calculated. For example, nearest-
neighbor interpolation yields a valid construction, where for
each i ∈ [Nx],

ωi(x) = 1

[
dX (x,xni) = inf

j∈[Nx]
{dX (x,xnj )}

]
,

in which case the Lipschitz constant c1 = 0.



The resulting distribution P̂N (x) is supported on the finite
set {ξmi

}i∈[Nξ], and can be rewritten as:

P̂N (x) =

Nξ∑
i=1

fi(x)δξmi
(·), (1)

where

fi(x) ≜
N∑

n=1

1[ξn = ξmi
]

Nx∑
j=1

ωj(x)

Nj
1[xn = xnj

]. (2)

It is straightforward to verify that
∑Nξ

i=1 fi(x) = 1. Due to
this finite support, using the interpolated measures P̂N (x) as
the nominal distribution in the ambiguity set enables tractable
computation of the Wasserstein distance. Moreover, since
P̂N (x) is derived from empirical data, measure concentration
results can be applied to establish finite-sample guarantees
(see Section IV).

IV. THEORETICAL GUARANTEES

In this section, we formally discuss the coverage property
of the designed ambiguity set, the out-of-sample performance
guarantee, the optimality guarantee, and the tractability of
DD-DRO.

A. Necessary Assumptions

We first introduce the necessary assumptions for the
theoretical analysis.

Assumption 1: The sets X and Ξ are compact and
bounded, and the objective function h(·, ·) is bounded on
X × Ξ. Moreover, for any x ∈ X , there exists a constant
cp > 0 such that for any s1, s2 ∈ Ξ,

|h(x, s1)− h(x, s2)| ≤ cp||s1 − s2||p.
Assumption 1 is a standard regularity condition in DRO
literature. In the context of DD-DRO, we further introduce
the following assumption to ensure that the problem is well-
posed.

Assumption 2 (Lipschitz Continuity): There exists a con-
stant c2 ≥ 0 such that for any x,y ∈ X :

dW (Q(x), Q(y)) ≤ c2dX (x,y).
Assumption 2 ensures that small changes in the decision
variable do not lead to large changes in the true distribution
Q(x). With these assumptions in place, we now present the
main theoretical results.

B. High-Probability Coverage of Ambiguity Set

As stated before, we construct decision-dependent ambi-
guity sets of forms in Definition 2 for DD-DRO, and choose
P̂N (x) to satisfy Definition 3. Under a given confidence level
β ∈ (0, 1), we choose rN as follows. Let Ar(x) ≜ {y ∈
X | dX (x,y) ≤ r} denote the ball centered at x with radius
r > 0, and let rD ≜ inf{r > 0 | X ⊆ ∪i∈[Nx]Ar(x

i)} be
the minimum covering radius of X . Then rN is chosen as:

rN = (c1 + c2)rD +

(
b(β, c3)

c4

) 1
k

, (3)

where c1 and c2 is defined in Definition 3 and Assumption 2
respectively, c3 and c4 are constants independent of D,
k is the dimension of ξ, and b(β, c) ≜ inf{t > 0 |∑Nx

i=1 exp{−tNi} < β
c } is a sample-dependent term.

We show that with probability at least 1 − β, the true
distribution is contained in such an ambiguity set.

Theorem 1 (Coverage of Ambiguity Set): Under Assump-
tions 1 and 2, given P̂N (x) in Eq. (1) and rN in Eq. (3), the
ambiguity set P(x) satisfies:

P(Q(x) ∈ P(x), ∀x ∈ X ) ≥ 1− β. (4)
The proof of Theorem 1 can be found in the full version

in [30]. Theorem 1 shows that in order for the ambiguity
set P(x) to contain the true distribution, the radius rN must
consist of two components:

1) a covering term (c1 + c2)rD capturing the sparsity of
the observed decisions xni

.
2) a statistical term ( b(β,c3)c4

)
1
k reflecting the sample suf-

ficiency at each xni
.

C. Out-of-Sample and Optimality Guarantee

Recall that ĴN and x̂N are the optimal objective value
and an optimal solution to (DD-DRO), and JN denotes the
expected objective value of x̂N under Q(x̂N ) and J⋆ is the
optimal objective value of (DDO). Theorem 2 establishes
that, with high probability, the gaps among ĴN , JN , and J⋆

can be bounded in terms of rN .
Theorem 2 (Out-of-Sample Performance): Under

Assumptions 1 and 2, given P̂N (x) in Eq. (1) and
rN in Eq. (3), then with probability at least 1− β, we have:

• J⋆ ≤ JN ≤ ĴN ,
• ĴN − 2cp · rN ≤ JN ≤ ĴN ,
• J⋆ ≤ JN ≤ J⋆ + 2cp · rN .

The proof of Theorem 2 can be found in the full version
in [30]. Since rN is determined by the covering radius of
the observed decision set and the statistical accuracy at each
decision point (Theorem 1), a denser dataset in X and larger
sample sizes Ni lead to a smaller rN . Consequently, the
performance bounds tighten, ensuring that x̂N attains near-
optimal out-of-sample performance with high confidence.

D. Tractability of DD-DRO Problem

Theorem 3 (Tractable Reformulation): Under
Assumption 1, given P̂N (x) in Eq. (1) and fi(x) in
Eq. (2), (DD-DRO) is equivalent to the following semi-
infinite optimization problem:

min
x∈X ,ν∈RNξ+1

Nξ∑
i=1

fi(x)νi + rN · νNξ+1

s.t. h(x, s)− νi − νNξ+1 · d(s, ξmi
) ≤ 0,

∀s ∈ Ξ,∀i ∈ [Nξ],

ν1, · · · , νNξ
∈ R, νNξ+1 ≥ 0.

This problem can be solved using a cutting-surface algorithm
[19][Section 4]. The proof of Theorem 3 can be found in the
full version in [30]. In practice, when the objective function
is convex or concave, (DD-DRO) can be further reduced to an
optimization problem with finitely many convex constraints,



as we will demonstrate in an application to dynamic pricing
in Section V.

V. CASE STUDY: DYNAMIC PRICING

In this section, we demonstrate the practical effectiveness
of our proposed method through an application to dynamic
pricing.

Consider a firm that sets prices x ∈ X ≜ [0, xU ]
T for

its goods or services over a finite horizon T in an ex-ante
manner. At each time period t ≤ T , the firm observes
demand ξt ∈ [0, ξU ], and earns revenue xtξt for satisfying it.
Rather than assuming a specific demand model, we consider
the general case where the demand vector ξ ∈ Ξ ≜ [0, ξU ]

T

follows an unknown, decision-dependent joint distribution
Q(x). This decision-dependent distribution Q(x) models the
fact that higher prices may depress demand while lower
prices may increase it, with the precise relationship unknown.
The cumulative revenue is defined as:

R(x, ξ) ≜ xTξ =

T∑
t=1

xtξt. (5)

The firm has access to historical pricing and demand pairs
(xn, ξn), which may have been generated under different
pricing strategies, and aim to set prices to maximize its
expected cumulative revenue. Without relying on restrictive
assumptions, the DD-DRO framework provides a pricing
strategy with both expected revenue guarantees and tractabil-
ity.

Specifically, in this setting, under Assumption 2, given
P̂N (x) in Eq. (1) and the objective function R(·, ·) in Eq. (5),
the problem (DD-DRO) can be reformulated as the following
optimization problem with finitely many convex constraints:

max
x,ν,w,λi,i∈[Nξ]

Nξ∑
i=1

fi(x)νi + rN · νNξ+1

s.t. − ξU1
T
Tλi − wTξmi ≥ νi, ∀i ∈ [Nξ],

w ∈ RT , ||w||q ≤ −νNξ+1,

λi ≤ x+ w,

ν1, · · · , νNξ
∈ R, νNξ+1 ≤ 0,

λi ∈ RT , λi ≥ 0, ∀i ∈ [Nξ],

where ||·||q is the dual norm of ||·||p satisfying 1
p+

1
q = 1, and

1T is a T -dimensional column vector of ones. Furthermore,
given rN in Eq. (3), the expected revenue can be bounded
as described in Theorem 2, with cp = xU .

We empirically evaluate our proposed approach to validate
the theoretical results. In the experiment, we model demand
as following a time-varying normal distribution, where its
mean vector [µt(x)] decreases with respect to the time-
averaged price:

µt(x) = (1.4− 0.2 · t) · (1.7 · xU −
∑T

t=1 xt

T
), (6)

and the covariance matrix is a identity matrix. We set
xU = 1, ξU = 5, and T = 3. We adopt nearest-neighbor
interpolation and vary both the ambiguity radius rN and the
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(a) The comparison of objective values as we vary the sample size. rN is
set to be 1.5.
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(b) The comparison of objective values as we vary rN . Sample size is set
to be 15 at each xn.

Fig. 2: Experiment results for the dynamic pricing problem.
The shaded area is [JN − 2xU · rN , JN + 2xU · rN ].

sample size. We then compare the values of ĴN , JN , and
J⋆. The results, averaged over 10 random seeds, are shown
in Fig. 2.

As shown in Fig. 2a, with a properly chosen rN , the result
supports the validity of Theorem 2, and the out-of-sample
performance JN is comparable to the optimal value J⋆ and
is relatively stable with the sample size. (Note that in the
pricing problem, we solve a max–min formulation, so the
inequality directions in Theorem 2 are reversed accordingly.)

In Fig. 2b, we demonstrate that Theorem 2 holds across a
wide range of rN values, and that the out-of-sample perfor-
mance JN remains stable without significant degradation as
rN increases.

VI. CONCLUSION

This paper introduces a novel decision-dependent distribu-
tionally robust optimization (DD-DRO) framework, targeting
for settings in which the underlying model parameter distri-
butions are both unknown and impacted by the decisions.
By constructing ambiguity sets via interpolation techniques
combined with the Wasserstein metric, we show that this
DD-DRO framework is both theoretically grounded and
computationally tractable.

Beyond the technical contributions, this work presents a
conceptual shift: instead of globally modeling or learning



the data-generating distribution, the decision-makers can
interpolate local empirical behavior by controlling robustness
level via principled, geometry-aware metrics. This perspec-
tive is particularly valuable in data-rich but structure-poor
environments, where parametric modeling can be unreliable
or infeasible.
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