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Abstract. This paper proposes a complex system optimization method to
obtain an optimal battery charging strategy. First, a real-world lithium-ion
battery charging model is built as a complex system problem, which includes
electric subsystem and thermal subsystem. The optimization objectives of
electric subsystem includes battery charging time and energy loss, and the
optimization objectives of thermal subsystem includes battery internal temper-
ature rise and surface temperature rise. Then a called biogeography-based
complex system optimization (BBO/Complex) algorithm is introduced, which is
a heuristic method for complex system optimization. Finally, BBO/Complex is
applied to the complex system of battery charging strategy, and the results show
that the proposed method is a competitive algorithm for solving batter charging
problem studied in this paper.

Keywords: Battery charging � Complex system � Heuristic algorithm �
BBO/Complex

1 Introduction

In recent years, portable electronic devices have been widely used in many domains.
Lithium-ion batteries are tending to replace the traditional rechargeable batteries such
as lead-acid batteries used in these devices, because they show some outstanding
performance such as high power and energy densities, broad operating temperature
range, long-life cycles, and low self-discharge rate [1]. These merits of lithium-ion
batteries make them become a very promising primary power source for electronic
devices in the future. Therefore, for the applications of lithium-ion batteries, a
well-designed battery charger plays a vital role for sustaining battery performance and
lifespan, and the key is to obtain a proper battery charging strategy including the
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selection of charging current pattern, the control and termination of charging process,
and the safety and behavior of the battery.

In the past years, a lot of approaches have been developed to improve the battery
charging performance. Some of the approaches involve computation intelligence
including neural networks [2, 3], grey prediction [4], and fuzzy control [5]. Some of
strategies take the battery charging behaviors as an optimization problem which is
further solved using heuristic methods. In [6], genetic algorithm (GA) is used to
manage online battery charging state for electric and hybrid vehicle applications. In [7],
particle swarm optimization (PSO) is employed to obtain optimum battery energy
storage system considering dynamic demand response for micro grids. But these
studies only consider battery charging performance as a single-objective or multi-
objective optimization problem. In fact, the battery temperatures including the surface
and internal temperatures also consist of a system optimization problem, and they are
important factors during the battery charging process, because too high or low tem-
perature would be harmful to the battery charging safety and behavior. Undoubtedly, it
becomes more complex than ever before, and the optimization becomes more difficult
under considering battery temperatures. In this situation, battery charging strategy
cannot be treated as a typical single-objective or multi-objective optimization problem
any long. Strictly, it is taken as a complex system, which contains multiple subsystems,
each of which contains multiple objectives, multiple constraints and multiple variables.
So it is necessary to build new heuristic methods to tackle the battery charging problem
under new circumstances.

Complex system optimization is a class of optimization methods dedicated to
solving complex problems with multiple subsystems, multiple objectives, and multiple
constraints. Traditional complex system optimization methods includes multidisci-
plinary feasible (MDF), individual discipline feasible (IDF) and collaborative opti-
mization (CO), which are popular in engineering domain [8, 9]. But these methods only
provide conceptual frameworks without involving the detailed algorithms, which are
usually specified based on the user’s preference. Recently, a heuristic method, called
biogeography-based complex system optimization (BBO/Complex) is proposed by
Simon and Du [10] to solve complex problems. Some literatures showed that
BBO/Complex had obtained good performance for the virtual machine placement [11],
the economic emission load dispatch [12], the speed reducer problem, the power
converter problem, the heart dipole problem and the propane combustion problem [10].

For battery charging management, an important but challenging problem is to
achieve optimal charging performance considering various factors including efficiency,
reliability and safety. Motivated by these considerations, this paper adopts BBO/
Complex to obtain the optimal battery charging strategy. The remainder of this paper is
organized as follows. Section 2 builds a battery charging model for complex system
optimization. Section 3 reviews BBO/Complex as a complex system optimization
method. Section 4 applies BBO/Complex to solve battery charging model and presents
optimization results. Section 5 provides conclusions and suggests directions for future
work.
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2 Problem Formulation of Battery Charging

The complex system model of battery charging is formulated as two subsystems, each
of which includes two objective functions. One is the electric subsystem with two
objectives of battery charging time and energy loss. Another is the thermal subsystem
with two objectives of battery internal temperature rise and surface temperature rise.

2.1 Battery Electric Subsystem

In the electric subsystem, the charging time during battery charging is an important
optimization indicator. Generally, the shorter the charging time is, the better the per-
formance is. Another important optimization indicator is the battery energy loss. The
smaller energy loss is, the higher the battery charging efficiency is.

The objective functions of the battery charging time and energy loss are defined as

JCT ¼ ts � ktf ð1Þ

JEL ¼ ts �
Xktf

k¼0

i2 kð Þ � R kð Þþ V2
1 kð Þ

R1 kð Þ þ V2
2 kð Þ

R2 kð Þ
� �

ð2Þ

where ts is the sampling time interval during the battery charging process, ktf is the
number of sample when the capacity of battery reaches its target, i is the charging
current, which remains constant during a given sample time internal, R, R1 and R2 are
the battery diffusion resistances, and V1 and V2 are the battery RC network voltages.

2.2 Battery Thermal Subsystem

In the thermal subsystem, the battery internal temperature rise and surface temperatures
rise are key performance indicators during the charging process. The higher the tem-
perature is, the more serious the damage is for the service life of the battery.

The objective functions for the battery internal temperature rise and surface tem-
perature rise can be defined as

JITR ¼ ts �
Xktf

k¼0

TIT kð Þ ð3Þ

JSTR ¼ ts �
Xktf

k¼0

TST kð Þ ð4Þ

where TIT and TST represent the battery internal and surface temperature respectively.
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2.3 Optimization and Constraints

Optimal battery charging strategy is to find the appropriate charging current i to
simultaneously minimize objective functions JCT and JEL in battery electric subsystem
and objective functions JITR and JSTR in battery thermal subsystem. It is defined as

minimize JCT ; JEL; JITR; JSTRf g: ð5Þ

Furthermore, during the battery charging process, some constraints and updates need to
be satisfied for the battery parameters such as voltage and current, which are described
as follows:

V1 kð Þ ¼ a1 � V1 k � 1ð Þ � b1 � i k � 1ð Þ
V2 kð Þ ¼ a2 � V2 k � 1ð Þ � b2 � i k � 1ð Þ
V kð Þ ¼ V1 kð ÞþV2 kð Þþ i kð Þ � R kð Þ

TIT kð Þ ¼ 1� ts�k1=D1ð Þ � TIT k � 1ð Þþ ts � k1=D1ð Þ � TST k � 1ð Þ
þ ts � R k � 1ð Þ � i2 k � 1ð Þ�D1

TST kð Þ ¼ ts�k1=D2ð Þ � TIT k � 1ð Þþ 1� ts� k1 þ k2ð Þ=D2ð Þ � TST k � 1ð Þ

ð6Þ

and

TIT 0ð Þ ¼ 0; TST 0ð Þ ¼ 0
aj ¼ exp �ts

�
Rj

� �
; j ¼ 1; 2

bj ¼ Rj � 1� aj
� �

imin � i kð Þ� imax

Vmin �V kð Þ�Vmax

ð7Þ

where k1; k2; D1 and D2 are pre-defined parameters, imin and imax are the minimum and
maximum values of charging current i, Vmin and Vmax are the minimum and maximum
values of the voltage V .

3 Biogeography-Based Complex System Optimization

This section provides an overview of BBO/Complex for complex system [10]. Before
we introduce the details of BBO/Complex, there are some notations we need to clarify.
BBO/Complex is an extension to the standard BBO, but it is different to BBO. Stan-
dard BBO is a single-objective or multiple-objective optimization algorithm, which is
suitable to a single system. BBO/Complex is a complex system optimization algorithm,
and it is suitable to a complex system with multiple subsystems, each of which contains
multiple objectives and multiple constraints. On the other hand, some definitions and
operating strategies of standard BBO, including migration and mutation, are reserved,
which are not described repeatedly in this paper.

Now we introduce some new BBO/Complex notations which are different with
standard BBO. Let P = {A1, A2, A3, …} denote an ecosystem that is comprised of
archipelagos, each of which corresponds to one subsystem. Ah = {Oh1, Oh2, Oh3, …;
Ch1, Ch2, Ch3, …; Ih1, Ih2, Ih3, …} represents an arbitrary archipelago, which is
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comprised of objective Ohi, constraints Chi and candidate solutions Ihi. Ihi = {Shi1, Shi2,
Shi3,…} represents an arbitrary candidate solutions, which is comprised of independent
variables Shij.

Based on the original paper [10], the framework of BBO/Complex is shown in
Fig. 1, which includes within-subsystem migration, cross-subsystem migration and
mutation.

The main steps of BBO/Complex are depicted as follows.

Step 1: Initialize the population and parameters;
Step 2: Perform within-subsystem migration for each subsystem;
Step 3: Perform cross-subsystem migration for selected subsystem pairs;
Step 4: Perform probabilistic mutation for each candidate solution;
Step 5: Terminate if the termination condition is satisfied, otherwise, generate the
next population and go to Step 2.

In step 1, BBO/Complex parameters include the number of subsystems, the number
of candidate solutions in each subsystem, the maximum immigration rate and emi-
gration rate, the mutation probability and stopping criterion.

In step 2, within-subsystem migration is very similar to standard BBO migration.
For standard BBO, the calculation of migration rates is based on the solution fitness,
and for BBO/Complex, the calculation of migration rates is based on the solution rank.
Note that solution rank in BBO/Complex combines all information of objectives and
constraints to calculate the migration rates, and the calculation method is the same to
non-dominated sorting [13]. The process of within-subsystem migration shows as
follows: first, probabilistically choose the immigrating solution based on immigration
rate, and use roulette-wheel selection based on emigration rates to select the emigrating

Subsystem 1:
within-subsystem

migration

Subsystem 2:
within-subsystem

migration

Subsystem M:
within-subsystem

migration

Cross-subsystem
migration

Mutation Mutation

Mutation

Fig. 1. Framework of BBO/Complex, including within-subsystem migration, crossover-
subsystem migration, and mutation.
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solution. Immigration rate and emigration rate linearly related to the solution rank,
which are calculated as

k ¼ k
K
; l ¼ 1� k ð8Þ

where k and l are the immigration rate and emigration rate respectively, k and K are the
solution rank and total number of solutions in a subsystem respectively.

Finally, migration is performed from the chosen emigrating solution to the corre-
sponding immigrating solution, and each independent variable in an immigrating
solution will have a chance to be replaced by an independent variable from an emi-
grating solution.

In step 3, cross-subsystem migration is carried out only on selected subsystem
pairs. First, calculate the constraint similarity level and objective similarity level
between every two subsystems, which is based on fast similarity level calculation
(FSLC) [14]. Next calculate Euclidian distance between each pair of solutions from two
selected subsystems. Finally perform cross-subsystem migration: probabilistically find
suitable pair of subsystems to migrate based on the obtained similarity levels. After
that, we need to choose emigrating solution for each immigrating solution. We use
roulette-wheel selection to select the emigrating solution based on Euclidian distances
of solutions. Solutions with better distances will have better chance to be selected as the
emigrating solution. Each independent variable in an immigrating solution will have a
chance to be replaced by an independent variable from an emigrating solution.

In step 4, probabilistically perform mutation on each solution based on the mutation
probability, which is the same as that in the standard BBO algorithm.

Based on the above description, we find that the two most important components
are within-subsystem migration and cross-subsystem migration for BBO/Complex. In
standard BBO, migration is a simple operator because only one subsystem evolves in
the entire system. But in complex system, it has multiple subsystems. We need to
combine all information within and cross subsystems, including objectives, constraints,
and solution variables, to determine to migration.

4 Simulation Results

In this section, we use BBO/Complex to solve the proposed battery charging problem.
The purpose of this simulation is to show the feasibility and effectiveness of
BBO/Complex to solve real-world complex systems. So we compare BBO/Complex
with CO, MDF, and IDF [10], which are well-known traditional complex system
optimization methods. But we do not compare it with other evolutionary algorithms
such as GAs, PSO and so on.

The battery charging parameters are set as follows: ts ¼ 1s, R ¼ 0:0152X,
R1 ¼ 0:0037X, R2 ¼ 0:0034X, k1 ¼ 1:6423, k2 ¼ 0:3102, D1 ¼ 286:35, and D2 ¼
30:9. In addition, the minimum and maximum values of charging current and voltage
are imin ¼ �30A, imax ¼ 0A, Vmin ¼ 2:6V , Vmax ¼ 3:65V respectively. The more detail
of the parameters of battery charging model refers to [15]. The performance criteria is
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based on the cost values of battery charging time, energy loss, internal temperature rise
and surface temperature rise, and the optimization goal is to find the minimum values
of these costs.

The parameters of BBO/Complex have been manually tuned for optimal perfor-
mance. For BBO/Complex and the complementary methods in CO, MDF, and IDF, the
size of population is 10, mutation rate is 0.01 per independent variable in solution, and
the number of Monte Carlo simulations is 20, with a maximum number of function
evaluations equal to 1000 for each Monte Carlo simulation. The optimization results
are shown in Table 1.

From Table 1, we see that BBO/Complex has the smallest cost value of charging
time, the smallest cost value of energy loss, the smallest cost value of internal tem-
perature rise and smaller surface temperature rise. That is, BBO/Complex has better
performance than traditional complex system optimization methods including CO,
MDF, and IDF. This is because BBO/Complex improves the diversity of solutions by
employing cross-subsystem migration and within-subsystem migration to enhance
optimization performance. According to these results, we conclude that BBO/Complex
has good complex system optimization performance for battery charging problem
studied in this paper.

5 Conclusions

In this paper, we propose a model of real-world lithium-ion battery charging, which is
formulated as a complex system with two subsystems, each of which includes two
objectives. Then, we introduce BBO/Complex, which includes within-subsystem
migration, cross-subsystem migration and mutation, to satisfy the structure of complex
systems. Finally, we apply BBO/Complex to the proposed battery charging model, and
the simulation results demonstrate that BBO/Complex can effectively obtain the opti-
mal battery charging strategy, which shows it is a competitive complex system opti-
mization algorithm.

This paper shows that BBO/Complex has good optimization performance for
solving battery charging problem, but it still opens other research directions for
additional development and empirical investigation. First, we consider some real-world
charging circumstance constraints into battery charging model, which are important
factors for charging performance. Second, we consider adjusting cross-subsystem

Table 1. The optimization results of the battery charging model for CO, MDF, IDF and
BBO/Complex.

Objective functions Complex system optimization
CO MDF IDF BBO/Complex

Charging time JCT 1342 1388 1524 1252
Energy loss JEL 17875 17912 18807 16908
Internal temperature rise JITR 10245 10107 11823 9805
Surface temperature rise JSTR 3428 3473 3612 3349
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migration strategy to improve BBO/Complex optimization performance for complex
system problems.
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