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Abstract
We address the problem of characterizing the aggregate flexibility

in populations of electric vehicles (EVs) with uncertain charging

requirements. Extending upon prior results that provide exact char-

acterizations of aggregate flexibility in populations of electric ve-

hicle (EVs), we adapt the framework to encompass more general

charging requirements. In doing so we give a characterization of

the exact aggregate flexibility as a generalized polymatroid. Fur-
thermore, this paper advances these aggregation methodologies to

address the case in which charging requirements are uncertain. In

this extended framework, requirements are instead sampled from a

specified distribution. In particular, we construct robust aggregate
flexibility sets, sets of aggregate charging profiles over which we

can provide probabilistic guarantees that actual realized popula-

tions will be able to track. By leveraging measure concentration

results that establish powerful finite sample guarantees, we are able

to give tight bounds on these robust flexibility sets, even in low

sample regimes that are well suited for aggregating small popula-

tions of EVs. We detail explicit methods to tractably compute these

sets. Finally, we provide numerical results that validate our results

and case studies that demonstrate the applicability of the theory

developed herein.
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1 Introduction
Increasing penetrations of intermittent renewable generation are

requiring power system operators to procure large amounts of flex-

ibility in order to mitigate their variability. Furthermore, as demand

in the distribution networks grows, system operators are begin-

ning to rely on these flexible loads to alleviate congestion in their

networks, in particular by implementing local flexibility markets.

Alongside this, EV uptake is rising and will make up a substantial

portion of system demand by the end of the decade. As they are

typically plugged in for more time than they require to charge, they

inherently possess a degree of flexibility in their charging behavior.

Formally, there are a set of charging profiles that an EV may take,

whilst satisfying the charging requirements defined by its user. Un-

der certain charging models, this flexibility set can be represented

as a convex polytope [21]. By controlling their charging profiles,

populations of EVs present a large potential source of flexibility

to power systems. However, owing to complexity and reliability

constraints it is not viable for individual loads to participate in

the flexibility markets, and so hierarchical control architectures

have been proposed [2]. From this, aggregators, entities that collate

flexibility from individual devices and bid it into the markets, have

emerged. In order to participate in these markets, aggregators must

represent the aggregate flexibility in the populations of devices

they control. A growing trend in the literature has been to charac-

terize the aggregate flexibility by computing the Minkowski sum

of the individual flexibility sets of devices in the population. As

calculating the Minkowski sum is NP-hard, most of the work in the

literature focuses on computing inner or outer [1] approximations

of the aggregate flexibility sets. Inner approximations are more

common as they guarantee the feasibility of all aggregate charging

profiles contained within them. Zonotopes are used to approximate

individual flexibility sets in [12], from which Minkowski sums can

be computed efficiently. Similar to this [7] and [15] use homothets

instead of zonotopes. In [13] a union-based approach is developed

that can produce tight approximations, at the expense of added

computational burden. As they do not contain all feasible aggregate

charging profiles, inner approximations do not guarantee optimal-

ity. Whilst there have been exact characterizations of the aggregate

flexibility in populations of EV such as [17] and [19], these methods

fail to scale well in the length of the time horizon. Thus far, only

[11] and [14] offer exact characterizations that are computationally

tractable for long time horizons. However, to scale well these works

https://doi.org/10.1145/3716863.3718054
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https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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Figure 1: A schematic of the work presented in this paper. We are provided with a distribution over charging requirements P.
From this distribution, a population of 𝑁 charging requirements is obtained by drawing 𝑁 independent samples from P. Each
of the charging requirements generate their own individual flexibility sets 𝐹 ( ˆ𝜉𝑖 ). The aggregate flexibility set for the population
is the Minkowski sum of these, 𝐹 (Ξ̂𝑖 ) =

∑𝑁
𝑖 𝐹 ( ˆ𝜉𝑖 ), characterizing this is the subject of Section 3. This aggregate flexibility set is a

random object and so we would like define robust sets 𝐴𝛽 , in which we have varying confidence that 𝐹 (Ξ̂𝑖 ) will be contained in.
We derive these robust sets in Section 4 and provide a tractable reformulation for their computation in Section 5.

require a certain amount of homogeneity in the populations they

aggregate.

All of these methods assume full knowledge of the charging

requirements of the EVs they aggregate. However, in most realistic

scenarios the charging requirement of an EV will be unknown to

the aggregator before it plugs in, and so aggregators will need to

estimate the aggregate flexibility sets. Historical datasets of EV

charging requirements are often available to aggregators, such as

[9], and can be used to inform these estimates. To this end, aggre-

gators require techniques to characterize aggregate flexibility sets

from historic data and uncertainty quantification methods for quan-

tifying the confidence they have in these sets. In some scenarios,

aggregators will be aggregating large populations, in which case

uncertainties can largely be ignored. However, with the advent of

local flexibility markets aggregators will have to characterize the

flexibility in small populations of EVs, where there are uncertainties

[8]. In [6] the problem of bidding into energy markets with min-

imum reliability requirements is considered. Similar to the work

presented in this paper, the authors address this by formulating it

as a distributionally robust joint chance-constrained optimization

problem, however they only characterize availability of populations

of EVs rather than the population’s flexibility over time. Building on

this, [22] introduces a novel approach for deriving a distributionally

robust inner approximation of the flexibility sets for distributed

energy resources. While effective for general DERs, the focus on

network-wide integration differs from the individual device-based

flexibility modeling predominant in EV-specific contexts. In [16],

the authors approximate the aggregate flexibility set with an ellip-

soid, which is built upon a convex quadratic classifier trained on

a historic dataset. This data-driven approach provides an efficient

method of calculating an approximated aggregate flexibility set,

however the methods here do not establish any theoretical proba-

bilistic guarantees. In [20], the uncertainties of EVs are also modeled

under a distributionally robust joint chance-constrained program-

ming framework. However, the uncertainty sets constructed could

be improved as they are derived from inner approximations of the

Minkowski sum.

Given these limitations on the exactness of approximations and

the rigor of uncertainty modeling, this paper makes the following

contributions:

• We derive a novel, efficient method of computing the aggre-

gate flexibility set for large populations of EVs over long time

horizons by expressing each EV’s feasible charging region as

a generalized polymatroid. This family of polytopes is closed

under Minkowski summation. Leveraging this property we

obtain an exact representation of the aggregate flexibility.

Unlike previously proposed methods, our approach does

not resort to approximations, thus preserving all feasible

solutions and soundness of the characterization.

• Building on this exact characterization, we exploit measure

concentration results to bound the uncertainty in EV charg-

ing requirements. Crucially, these results remain tight even

in low-sample regimes, making them highly applicable to

scenarios involving smaller EV populations or limited histor-

ical data. Our approach thus yields distributionally robust

flexibility sets, ensuring high-confidence feasibility without

over constraining the available flexibility.

Fig. 1 offers a high-level schematic for the work presented here.

The rest of the paper is structured as follows: Section 2 formally

introduces our setting, including the model for EV charging, the



Robust Aggregation of Electric Vehicle Flexibility HSCC ’25, May 6–9, 2025, Irvine, CA, USA

concept of individual and aggregate flexibility, and the uncertainty

assumptions. In Section 3 we introduce generalized polymatroids,

a family of polytopes that contain all individual EV flexibility sets.

We use properties of these polytopes to provide a fast aggregation

method. Moving to the stochastic setting, in Section 4, we establish

probabilistic guarantees built on measure concentration results,

and use them to derive conditions on the parameters that define

the robust flexibility sets. Section 5 offers a derivation of how to

compute the parameters defining these robust flexibility sets. We

reformulate the associated optimization problems, demonstrating

how to handle distributionally robust considerations efficiently.

Numerical simulations are used to validate the theoretical results

of this paper in Section 6, along with a topical case study to show

the practical applicability of the theory. Finally we discuss the

implications of this work and give directions for future work in

Section 7.

Notation
We let calligraphic letters define finite sets, e.g. T = {0, ..,𝑇 − 1}.
For a vector 𝑥 ∈ R𝑇 and 𝑡 ∈ T , we let 𝑥 (𝑡) denote the 𝑡-th element

of 𝑥 . For a setA ⊆ T , we let 𝑥 (A) = ∑
𝑡 ∈A 𝑥 (𝑡), and 𝑥 (A) = 0 for

A = ∅. Uppercase letters denote convex polytopes e.g. 𝐹 ⊂ R𝑇 , bold
face letters, P, denote probability distributions, and hatted letters,

ˆ𝜉 , denote random variables.

∑
denotes both sums and Minkowski

sums, depending on the context.

2 Problem Formulation
In this section, we first introduce our model for EV charging and

formalize our notion of flexibility, both in the context of individual

EVs and for aggregations of them.We then introduce the problem of

robust aggregation. In the following, we consider an aggregator that

has direct control over the charging of a population of 𝑁 EVs. We

denote the set of EVs as 𝑖 ∈ N = {1, . . . , 𝑁 }. We will consider the

problem over a finite time horizon, and we discretize this horizon

into𝑇 time steps each of duration 𝛿 . We denote the set of time steps

as 𝑡 ∈ T = {0, . . . ,𝑇 − 1}.

2.1 Individual Flexibility Sets
Let 𝑢 : R → R denote the charging profile of an EV, such that 𝑢 (𝜏)
is the power consumption at time 𝜏 . We assume that the EV’s power

consumption is constant in each timestep so that 𝑢 is piecewise

constant, i.e. 𝑢 : T → R, and we instead write 𝑢 ∈ R𝑇 . We let

𝑥 ∈ R𝑇 denote the state of charge of the EV in each time step, such

that 𝑥 (𝑡) is the state of charge in timestep 𝑡 . The charging dynamics

of the EV are given by:

𝑥 (𝑡 + 1) = 𝑥 (𝑡) + 𝑢 (𝑡)𝛿. (1)

Without loss of generality, we assume 𝛿 = 1 henceforth. Also, by

convention, we assume that the state of charge of the EV at 𝑡 = 0

is 𝑥 (0) = 0. This assumption is also without loss of generality, as

we can simply shift the state of charge constraints in (3) when this

does not hold.

In this paper we restrict the EVs to a charging-only regime, i.e.

we consider no vehicle-to-grid capabilities. The maximum rate at

which the EV may charge is denoted𝑚. An EV will arrive at and

depart from the charging stationwithin the time horizon.We denote

its arrival and departure times as 𝑡, 𝑡 ∈ [0,𝑇 ), respectively, and let

C := [𝑡, 𝑡] ∩T ⊆ T denote its connection time, namely the finite set

of time steps in which the EV is connected to the charging station.

At all time steps during its connection time, the EV may charge up

to its maximum rate, whereas for all other time steps the EV does

not charge:

0 ≤𝑢 (𝑡) ≤ 𝑚 ∀𝑡 ∈ C, (2a)

𝑢 (𝑡) = 0 ∀𝑡 ∈ T \ C. (2b)

Finally, we let 𝑒 and 𝑒 denote the lower and upper bound on the

EV’s state of charge at the final time:

𝑒 ≤ 𝑢 (T ) ≤ 𝑒. (3)

where 𝑢 (T ) denotes the sum over all time steps, as introduced in

the notation section. Note that (2) ensures that the EV only charges

during its connection times. For ease of notation we collect all the

parameters relating to the EV charging requirements into the tuple

𝜉 = (𝑒, 𝑒, 𝑡, 𝑡,𝑚). Naturally, for some values of 𝜉 , there will not exist

any feasible charging profiles, and so we define Ξ to be the set of

charging requirements that are feasible:

Ξ :=

{
𝜉 = (𝑒, 𝑒, 𝑡, 𝑡,𝑚)

���� 0 ≤ 𝑡 ≤ 𝑡 < 𝑇
0 ≤ 𝑒 ≤ 𝑒 ≤ |C|𝑚

}
. (4)

Using this model, we consolidate the constraints of (2) and (3) to

define the set of charging profiles an EV may take whilst satisfying

its charging requirements:

Definition 2.1. For an EV with charging parameters 𝜉 , the indi-
vidual flexibility set, denoted, 𝐹 (𝜉) ⊂ R𝑇 , is the set of all feasible
charging profiles for the EV:

𝐹 (𝜉) :=
𝑢 ∈ R𝑇

������ 0 ≤ 𝑢 (𝑡) ≤ 0 ∀𝑡 ∈ T \ C
0 ≤ 𝑢 (𝑡) ≤ 𝑚 ∀𝑡 ∈ C
𝑒 ≤ 𝑢 (T ) ≤ 𝑒

 . (5)

The individual flexibility set, as defined above, is the intersection

of a collection of half-spaces and so is a convex polytope in R𝑇 .

2.2 Aggregate Population Flexibility Sets
We now consider the case where we have a population of 𝑁 EVs,

each with charging parameters 𝜉𝑖 for 𝑖 ∈ N , where 𝑢𝑖 denotes

the charging profile of the 𝑖𝑡ℎ EV. We let Ξ𝑁 denote the set of

the charging parameters of all EVs in the population such that

Ξ𝑁 = {𝜉1, . . . , 𝜉𝑁 }.
The aggregate charging profile, 𝑢N , of the population is given by

the sum of the individual charging profiles of EVs in the population:

𝑢N =

𝑁∑︁
𝑖=1

𝑢𝑖 .

Definition 2.2. For a population of EVs with charging parameters,

Ξ𝑁 , the aggregate flexibility set, denoted 𝐹 (Ξ𝑁 ), is the set of all
feasible aggregate charging profiles of the population:

𝐹 (Ξ𝑁 ) :=
{
𝑢N ∈ R𝑇 | 𝑢N =

𝑁∑︁
𝑘=1

𝑢𝑖 , 𝑢𝑖 ∈ 𝐹 (𝜉𝑖 ) ∀𝑖
}
. (6)
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By definition, 𝐹 (Ξ𝑁 ) is the Minkowski sum of the individual

flexibility sets of the EVs in the population:

𝐹 (Ξ𝑁 ) =
𝑁∑︁
𝑖=1

𝐹 (𝜉𝑖 ). (7)

In general, however, an aggregator will have to make decisions

about the population of EVs before they connect, and so will not

have access to the charging requirements of the EVs in the popula-

tion. However, they will have access to historic data on the charging

requirements of the EVs. Therefore, we model the charging require-

ments as i.i.d. random variables according to a given distribution P
that is supported on Ξ.

We denote the set of random charging requirements of the pop-

ulation as Ξ̂𝑁 := { ˆ𝜉𝑖 }𝑖≤𝑁 ⊆ Ξ: this set is a random variable dis-

tributed according to P𝑁 . Hence, the polytope, 𝐹 (Ξ̂𝑁 ), generated
by Ξ̂𝑁 , is a random object that is governed by the distribution P𝑁 .
The aggregator will need to optimize over 𝐹 (Ξ̂𝑁 ), before observing
Ξ̂𝑁 . Therefore it is useful for aggregators to understand which ag-

gregate charging profiles can be satisfied by the population within

certain confidence levels. Characterizing sets of this type is the

main focus of this paper.

Definition 2.3. For a population of 𝑁 EVs with charging require-

ments Ξ̂𝑁 , distributed according to P𝑁 , the robust aggregate flexibil-
ity set at confidence level 𝛽 , denoted𝐴𝛽P,𝑁 , is the set of all aggregate

charging profiles that can be satisfied with a probability of 1 − 𝛽 :

𝐴
𝛽

P,𝑁 := {𝑢N ∈ R𝑇 | P𝑁 {Ξ̂𝑁 : 𝑢N ∈ 𝐹 (Ξ̂𝑁 )} ≥ 1 − 𝛽}.

Here, we emphasize that 𝐴
𝛽

P,𝑁 represents a set of aggregate

charging profiles for a population of 𝑁 electric vehicles, each with

charging requirements sampled from distribution P, for which we

can guarantee will be feasible with a confidence level of 1−𝛽 . In the

following we assume the distribution over charging requirements

P and the size of the population 𝑁 is fixed, and so, for clarity, we

will drop the superscripts P and 𝑁 from 𝐴
𝛽

P,𝑁 , and simply refer to

it as 𝐴𝛽 .

2.3 Limitations
Although the proposed model offers a realistic treatment of EV

charging requirements, it is subject to some limitations. Firstly, we

assume that the EV charging requirements are i.i.d. according to

the common distribution P. This assumption may hold in some

contexts, for example, in a charging station serving a homogeneous

fleet. However, in scenarios where aggregators have built up a

profile of individual vehicles in the population, it becomes more

appropriate to model each with distinct distributions. In such cases,

the i.i.d. assumption becomes limiting and may overlook important

heterogeneity.

Secondly, our model restricts EVs to charging only, with no

allowance for discharging. Generalized polymatroids are expressive

enough to faithfully model discharging. However, this adds another

layer of complexity to the characterizations. The focus of this paper

is on uncertainty quantification in the aggregate flexibility sets,

and so we work with this simpler, but less expressive, charging

model. Applying this work to the more general case of EVs with

discharging capabilities is an interesting avenue for future work.

𝑆 (𝑏)

𝑆 ′ (𝑝)

𝑄 (𝑝,𝑏)

Figure 2: Polyhedra generated by the paramodular pair (𝑝,𝑏).
The red and blue lines are the submodular and supermodular
base polyhedra. The red and blue shaded regions are the
submodular and supermodular polyhedra, 𝑆 (𝑏) and 𝑆 ′ (𝑝).
The g-polymatroid, 𝑄 (𝑝,𝑏), is generated by the intersection
of 𝑆 (𝑏) and 𝑆 ′ (𝑝).

3 Aggregation of Flexibility
In this section, we provide a characterization of the aggregate flexi-

bility set defined in (6). We obtain this by computing the Minkowski

sum of the individual flexibility sets. In general, computingMinkowski

sums is an NP-hard problem, however in this section we provide

a tractable method for its computation. This is done by showing

that the individual flexibility sets, as defined in (5), are members of

a family of polytopes that are closed under Minkowski summation,

and whose Minkowski sum can be computed efficiently.

We start by introducing some concepts that will be relevant

for our aggregation method. In the following we will consider set

functions defined over the set T = {0, ...,𝑇 − 1} , where 𝑇 is the

time horizon of the problem.

Definition 3.1 (Submodular functions). [5] A submodular function
𝑏 : 2

T → R, is a set-function defined over the subsets of a finite set

T , which satisfies the inequality

𝑏 (A ∪ {𝑒}) − 𝑏 (A) ≥ 𝑏 (B ∪ {𝑒}) − 𝑏 (B) . (8)

for all subsets A ⊆ B ⊆ T and 𝑒 ∈ T \ B.

One can also define a supermodular function by reversing the

inequality in (8), or as the negative of a submodular function: if

𝑏 is submodular then 𝑝 = −𝑏 is supermodular. The submodular
polyhedron associated with a submodular function, 𝑏, is defined as:

𝑆 (𝑏) := {𝑥 ∈ R𝑇 | 𝑥 (A) ≤ 𝑏 (A), ∀A ⊆ T }.

The intersection of this with the plane 𝑥 (T ) = 𝑏 (T ) is called the

base polyhedron of 𝑏:

𝐵(𝑏) := {𝑥 ∈ R𝑇 | 𝑥 (A) ≤ 𝑏 (A), ∀A ⊆ T , 𝑥 (T ) = 𝑏 (T )}.

Similar definitions can be made for supermodular functions, where

the supermodular functions bound the polyhedra from below.
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Definition 3.2 (Paramodularity). [5] A pair (𝑝, 𝑏) of set-functions
is paramodular if 𝑝 (∅) = 𝑏 (∅) = 0, 𝑝 is supermodular, 𝑏 is submod-

ular, and for all A,B ⊆ T :

𝑏 (A) − 𝑝 (B) ≥ 𝑏 (A \ B) − 𝑝 (B \ A) .

The intuition behind paramodularity is that it restricts the base

polyhedra of the submodular function to be contained within the

supermodular polyhedra of the supermodular function, and vice

versa.

Definition 3.3 (Generalized polymatroids). [5] For a paramodular

pair (𝑝,𝑏), the polyhedron 𝑄 (𝑝,𝑏) is called a generalized polyma-
troid (g-polymatroid for short), where:

𝑄 (𝑝,𝑏) := {𝑥 ∈ R𝑇 | 𝑝 (A) ≤ 𝑥 (A) ≤ 𝑏 (A) ∀A ⊆ T }.

Essentially, a g-polymatroid is the intersection of a supermod-

ular polyhedron and a submodular polyhedron, generated by a

paramodular pair. A visual depiction of this construction is pro-

vided in Fig. 2.

Definition 3.4 (Plank). [5] Given 𝛼, 𝛽 ∈ R with 𝛼 ≤ 𝛽 , the plank
𝐾 (𝛼, 𝛽) is

𝐾 (𝛼, 𝛽) := {𝑥 ∈ R𝑇 | 𝛼 ≤ 𝑥 (T ) ≤ 𝛽}.

We now turn our attention to the individual flexibility sets intro-

duced in the previous section. One can write an individual flexibility

set as the intersection of a cube and a plank: 𝐹 (𝜉) = 𝐹 ′ (𝜉) ∩𝐾 (𝑒, 𝑒),
where:

𝐹 ′ (𝜉) :=
{
𝑢 ∈ R𝑇

���� 0 ≤ 𝑢 (𝑡) ≤ 0 ∀𝑡 ∈ T \ C
0 ≤ 𝑢 (𝑡) ≤ 𝑚 ∀𝑡 ∈ C

}
. (9)

Lemma 3.5. 𝐹 ′ (𝜉) is the g-polymatroid 𝑄 (𝑝′, 𝑏′), where:
𝑝′
𝜉
(A) := 0,

𝑏′
𝜉
(A) := |A ∩ C|𝑚.

Here, |A| denotes the cardinality of the set A.

Proof. 𝐹 ′ (𝜉) is a cube of side length𝑚 in the subspaceRC ⊆ R𝑇 .
The submodular function that generates this cube is 𝑏′

𝜉
(A) = |A ∩

C|𝑚. 𝐹 ′ (𝜉) is bounded from below by 0 for all A ⊆ T , and so

𝑝′
𝜉
(A) = 0. The paramodularity of the pair (𝑝′

𝜉
, 𝑏′
𝜉
) holds trivially.

□

We can now use the following theorem to show that the intersec-

tion of 𝐹 ′ (𝜉) and 𝐾 (𝑒, 𝑒), and hence 𝐹 (𝜉), is a g-polymatroid. Fig. 3

provides a graphical illustration of the theorem.

Theorem 3.6 (Plank Intersection theorem). [5, Theorem 14.3.13]
The intersection of the g-polymatroid𝑄 (𝑝′, 𝑏′), and the plank𝐾 (𝛼, 𝛽)
is a g-polymatroid 𝑄 (𝑝,𝑏), where:

𝑝 (A) := max{𝑝′ (A), 𝛼 − 𝑏′ (T \ A)}
𝑏 (A) := min{𝑏′ (A), 𝛽 − 𝑝′ (T \ A)}.

Corollary 3.7. 𝐹 (𝜉) is the g-polymatroid 𝑄 (𝑝𝜉 , 𝑏𝜉 ), where:
𝑝𝜉 (A) := max{0, 𝑒 − |C \ A|𝑚},
𝑏𝜉 (A) := min{|A ∩ C|𝑚, 𝑒}.

Proof. This follows directly from Theorem 3.6, Lemma 3.5 and

using the identity | (T \ A) ∩ C| = |C \ A|, ∀C ⊆ T . □

𝑢 (2)

𝑢 (1)

𝑄 (𝑝′, 𝑏′)

Figure 3: A cube 𝐹 ′ (𝜉) (red shaded region), and a plank 𝐾 (𝑒, 𝑒)
(blue shaded region), intersecting to form the g-polymatroid
𝑄 (𝑝′, 𝑏′) (region outlined in blue).

Now, with our characterization of the individual flexibility sets as

g-polymatroids we can exploit some of the properties of this family

of polytopes. In particular, we can use the following theorem to

efficiently compute the Minkowski sum of a set of g-polymatroids.

Theorem 3.8 (Sum theorem). [5, Theorem 14.2.15]
The Minkowski sum of a set of g-polymatroids is given by∑︁

𝑖

𝑄 (𝑝𝑖 , 𝑏𝑖 ) = 𝑄
(∑︁
𝑖

𝑝𝑖 ,
∑︁
𝑖

𝑏𝑖

)
.

Corollary 3.9. The aggregate flexibility set, 𝐹 (Ξ𝑁 ), is the g-
polymatroid 𝑄 (𝑝Ξ𝑁

, 𝑏Ξ𝑁
), where:

𝑝Ξ𝑁
(A) :=

𝑁∑︁
𝑖=1

𝑝𝜉𝑖 (A) =
𝑁∑︁
𝑖=1

max{0, 𝑒𝑖 − |C𝑖 \ A|𝑚𝑖 },

𝑏Ξ𝑁
(A) :=

𝑁∑︁
𝑖=1

𝑏𝜉𝑖 (A) =
𝑁∑︁
𝑖=1

min{|A ∩ C𝑖 |𝑚𝑖 , 𝑒𝑖 }.

This result provides a tractable method of computing the aggre-

gate flexibility set, 𝐹 (Ξ𝑁 ), as the Minkowski sum of the individual

flexibility sets. The representation of 𝐹 (Ξ𝑁 ), characterized as a

generalized polymatroid, involves an exponential number of con-

straints, which may appear computationally intractable to handle.

Nevertheless, these polytopes are well-studied, and various opti-

mization problems can be solved in polynomial time. For a detailed

discussion the reader is referred to [5].

4 Aggregation Under Uncertainty
We now turn to the case in which charging requirements are uncer-

tain, but i.i.d. according to a known distribution P. In practice, we

assume that aggregators have a large amount of historical data of

charging requirements, from which they can construct the known
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P. We denote the set of random charging requirements of the pop-

ulation as Ξ̂𝑁 := { ˆ𝜉𝑖 }𝑖≤𝑁 ⊆ Ξ. This set is a random variable dis-

tributed according to P𝑁 . As the population charging requirements

are random, the aggregate flexibility set generated by them, 𝐹 (Ξ̂𝑁 ),
will also be a random object. And so we focus on characterizing a

robust set of aggregate charging profiles that can be tracked with

confidence 1 − 𝛽 , namely 𝐴𝛽 from Definition 2.3.

To do so, we first characterize an ambiguity set of sample pop-

ulations that will be realized with a given confidence. Let QΞ̂𝑁

denote the discrete empirical probability distribution generated by

the sample population Ξ̂𝑁 :

QΞ̂𝑁
:=

1

𝑁

∑︁
ˆ𝜉𝑖 ∈Ξ̂𝑁

𝛿
ˆ𝜉𝑖
,

where 𝛿
ˆ𝜉𝑖
is the Dirac distribution that concentrates mass on

ˆ𝜉𝑖 .

Definition 4.1. The Wasserstein distance between two distribu-

tions P and Q is defined as:

𝑑𝑊 (P,Q) := inf

Π

∫
Ξ×Ξ

| |𝜉 − 𝜉 ′ | |Π(𝑑𝜉, 𝑑𝜉 ′),

where Π is a joint distribution on Ξ × Ξ with marginals P and Q,
and | |𝜉 − 𝜉 ′ | | is an arbitrary norm on Ξ.

Intuitively, the Wasserstein distance represents the minimum

work required to move the probability mass of P to the distribution

Q. The reader is referred to [18] for a more complete discussion of

the Wasserstein distance. With these definitions we can tap into

the following result.

Theorem 4.2 (Measure concentration). [4, Theorem 2]:

P𝑁
{
Ξ̂𝑁 : 𝑑𝑊 (P,QΞ̂𝑁

) ≥ 𝜀
}
≤ 𝛽

where for all 𝑁 ≥ 1

𝛽 =


𝑐1𝑒

−𝑐2𝑁𝜀2 if 𝜀 ≤ 1

𝑐1𝑒
−𝑐2𝑁𝜀𝑎 if 𝜀 > 1

(10)

and 𝑐1, 𝑐2 and 𝑎 are positive constants that depend on P and the norm
used to define the Wasserstein distance.

We can now define an ambiguity set, B𝛽 , as the set of empiri-

cal distributions that lie inside a Wasserstein ball of radius 𝜀𝑁 (𝛽)
centered on P:

B𝛽 :=

{
QΞ̂𝑁

��� 𝑑𝑊 (P,QΞ̂𝑁
) ≤ 𝜀𝑁 (𝛽)

}
, (11)

where 𝜀𝑁 (𝛽) is simply given by the inverse of (10). With a slight

abuse of notation, we will use Ξ̂𝑁 ∈ B𝛽 to denote that the empirical

distribution generated by the sample population Ξ̂𝑁 lies within the

Wasserstein ball B𝛽 , i.e.

Ξ̂𝑁 ∈ B𝛽 =⇒ 𝑑𝑊 (P,QΞ̂𝑁
) ≤ 𝜀𝑁 (𝛽) . (12)

Using Theorem 4.2 we can give the following probabilistic guar-

antees over our ambiguity set:

P𝑁
{
Ξ̂𝑁 : Ξ̂𝑁 ∈ B𝛽

}
≥ 1 − 𝛽.

Remark. This result is particularly well-suited to the problem at

hand. The measure concentration result offers tight bounds when

the sample size is small. In some use cases aggregators may have to

optimize and coordinate the charging of EVs that are connected to

the same low-voltage substation. For such cases the number of EVs

in the population,𝑁 , is limited, making it crucial to have guarantees

that perform effectively for small sample sizes. This work can be

compared to the likes of [10], with one key distinction: we assume

to have knowledge of the distribution over charging requirements

P, and access to a finite (possibly small) population that samples the

distribution P. Hence the ambiguity sets referred to in this paper

are centred on P and we are searching for “worst-case” populations

that generate empirical distributions, QΞ̂𝑁
, that lie within this set.

This is opposed to [10], which instead centers the ambiguity set

on the empirical distribution of the sampled data and searches for

“worst-cases” of the true distribution.

Using B𝛽 as our ambiguity set, we want to ensure that for all

populations that generate empirical distributions that lie in B𝛽 ,
the aggregate flexibility sets associated to them contain the robust

aggregate flexibility set 𝐴𝛽 . Additionally, we want to ensure that

this robust aggregate flexibility set is the largest set that satisfies

this property.

Lemma 4.3. The robust aggregate flexibility set can be character-
ized as

𝐴𝛽 =
⋂

Ξ̂𝑁 ∈B𝛽

𝐹 (Ξ̂𝑁 ) (13)

Proof. From (13), 𝐴𝛽 is defined as the intersection of a collec-

tion of polytopes. Consequently, 𝐴𝛽 is a subset of each of these

polytopes, i.e.

𝐴𝛽 ⊆ 𝐹 (Ξ̂𝑁 ), ∀ Ξ̂𝑁 ∈ B𝛽 ,

and so we guarantee that 𝐴𝛽 is contained within all aggregate

flexibility sets generated by sample populations that lie in the am-

biguity set. Moreover, (13) defines the largest set that fulfills this

property. □

From this implication, we can characterize 𝐴𝛽 by calculating the

flexibility sets for all elements in our ambiguity set and taking their

intersection. Using this theorem we can characterize the robust

aggregate flexibility set, 𝐴𝛽 , as a g-polymatroid.

Theorem 4.4. The robust aggregate flexibility set, 𝐴𝛽 , is the g-
polymatroid:

𝐴𝛽 = 𝑄 (𝑝𝛽 , 𝑏𝛽 ), (14)

where:

𝑝𝛽 (A) := max

Ξ̂𝑁 ∈B𝛽

𝑝Ξ̂𝑁
(A) (15)

𝑏𝛽 (A) := min

Ξ̂𝑁 ∈B𝛽

𝑏Ξ̂𝑁
(A). (16)

Proof. For two g-polymatroids 𝑄 (𝑝𝑎, 𝑏𝑎) and 𝑄 (𝑝𝑏 , 𝑏𝑏 ), the in-
tersection of the two is a g-polymatroid 𝑄 (𝑝𝑐 , 𝑏𝑐 ), where:

𝑝𝑐 (A) := max{𝑝𝑎 (A), 𝑝𝑏 (A)}
𝑏𝑐 (A) := min{𝑏𝑎 (A), 𝑏𝑏 (A)} ∀A ⊆ T .
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𝑢N (2)

𝑢N (1)

𝐹 (Ξ̂1

𝑁
)

𝐹 (Ξ̂2

𝑁
)

𝐴𝛽

𝑝
Ξ̂1
𝑁

𝑝
Ξ̂2
𝑁

𝑏
Ξ̂1
𝑁

𝑏
Ξ̂2
𝑁

Figure 4: A visualization of the proof of Theorem 4.4. The
robust set is the intersection of the aggregate flexibility sets
generated by populations that lie in the ambiguity set. Here,
we show the aggregate flexibility sets associated with two
sample populations, Ξ̂1

𝑁
and Ξ̂2

𝑁
. The aggregate flexibility

sets generated by them are, 𝐹 (Ξ̂1

𝑁
) and 𝐹 (Ξ̂2

𝑁
), and their in-

tersection, 𝐴𝛽 . The robust set is defined by the maximum of
the supermodular functions (in this case 𝑝Ξ̂2

𝑁

) and minimum
of the submodular functions (in this case 𝑏Ξ̂1

𝑁

). For clarity we
only show the sub- and supermodular functions for A = {1}.

Evaluating the maximum of 𝑝Ξ̂𝑁
(A) and minimum of 𝑏Ξ̂𝑁

(A)
over all elements in the ambiguity set B𝛽 gives the required result.

□

Fig. 4 provides a visualization of the proof of this theorem.

5 Tractable Reformulation
Having introduced a theoretical framework for uncertainty quan-

tification of aggregate flexibility sets, in this section we turn to the

explicit computation of the parameters that define these sets. Specif-

ically, this section demonstrates how the optimization problems

defining the supermodular function 𝑝𝛽 and submodular function𝑏𝛽

from Theorem 4.4, which together parameterize the g-polymatroid

𝑄 (𝑝𝛽 , 𝑏𝛽 ), can be recast as finite convex programs. For brevity we

will only focus on a reformulation of the supermodular function,

𝑝𝛽 . Results for the reformulation of the submodular function can

be found in the appendix. We do this by considering, for a given

subset A ⊆ T , the maximization problem

𝑝𝛽 (A) := max

Ξ̂𝑁 ∈B𝛽

𝑝Ξ̂𝑁
(A), (17)

where we are optimizing over empirical distributions QΞ̂𝑁
that lie

within B𝛽 , the Wasserstein ball of radius 𝜀 centred at P. For clarity
in notation, we drop A in the notation of 𝑝Ξ̂𝑁

(A), denoting it

simply as 𝑝Ξ̂𝑁
. Using the definition of 𝑝Ξ̂𝑁

, we can write it in terms

of the expectation of 𝑝𝜉 over the empirical distribution QΞ̂𝑁
:

1

𝑁
𝑝Ξ̂𝑁

=
1

𝑁

∑︁
𝜉𝑖 ∈Ξ̂𝑁

𝑝𝜉𝑖 = E𝜉∼QΞ̂𝑁
[𝑝𝜉 ] . (18)

And so we rewrite our optimization problem as a maximization

of the expectation of 𝑝𝜉 with respect to the empirical distribution

QΞ̂𝑁
:

𝑝𝛽 = 𝑁 max

Ξ̂𝑁 ∈B𝛽

E𝜉∼QΞ̂𝑁
[𝑝𝜉 ] . (19)

As yet, we have not put any assumptions on the form of P. How-
ever, to make use of results in the literature, it is useful to have our

Wasserstein ball centred on an empirical distribution. Here we as-

sume that P is given as an𝑀-point empirical distribution, however

this is not necessary as we discuss in Appendix A.1. We write the

support of this empirical distribution as ΞP = {𝜉1, . . . , 𝜉𝑀 }.

Definition 5.1 (Convexity of 𝑝 (𝜉), Ξ). We say that the system of

𝑝𝜉 and Ξ is convex if:

(1) Ξ ⊆ R𝑑 is a convex and closed set

(2) 𝑝𝜉 can be written as the point-wise maximum of a finite

number of affine concave functions, i.e.

𝑝 (𝜉) := max

𝑘≤𝐾
{𝑝𝑘 (𝜉)}, (20)

where 𝑝𝑘 (𝜉) is an affine concave function, for all 𝑘 ≤ 𝐾 .

From its definition in (4), Ξ is a convex and closed set. From

Corollary 3.7, 𝑝𝜉 is clearly a point-wise maximum of a set of func-

tions. However, since it depends on the cardinality of the set C, it
is not concave. This is addressed in detail in Appendix A.2.

From this, we can now invoke the following theorem and adapt

it to suit our requirements.

Theorem 5.2 (Worst-case distributions). [10, Theorem 4.4]
If Ξ and 𝑝 (𝜉) form a convex system, then the worst-case expectation
(19) coincides with the optimal value of the finite convex program

𝑝𝛽 = max

𝛼𝑖𝑘 ,𝑞𝑖𝑘

∑︁
𝜉𝑖 ∈ΞP

𝐾∑︁
𝑘=1

𝛼𝑖𝑘𝑝𝑘

(
𝜉𝑖 −

𝑞𝑖𝑘

𝛼𝑖𝑘

)
s.t.

1

𝑀

𝑀∑︁
𝑖=1

𝐾∑︁
𝑘=1

∥𝑞𝑖𝑘 ∥ ≤ 𝜀′,

𝐾∑︁
𝑘=1

𝛼𝑖𝑘 = 1 ∀𝑖 ≤ 𝑀,

𝛼𝑖𝑘 ≥ 0 ∀𝑖 ≤ 𝑀, ∀𝑘 ≤ 𝐾,

𝜉𝑖 −
𝑞𝑖𝑘

𝛼𝑖𝑘
∈ Ξ ∀𝜉𝑖 ∈ Ψ, ∀𝑘 ≤ 𝐾.

(21)

Theorem 5.2 provides a tractable reformulation of the optimiza-

tion problem (19), allowing us to compute the worst-case expecta-

tion of the supermodular function 𝑝𝛽 efficiently. The reformulation

of the submodular function 𝑏𝛽 can be done in a similar manner,

details of this can be found in Appendix A.3.
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Figure 5: Empirical results showing the probability of not
being able to satisfy all aggregate charging profiles within
the robust set 𝐴𝛽 , for different values of 𝜀 and 𝑁 .

6 Applications and Numerical Results
We now showcase the utility of the robust aggregation methods laid

out in this work. To use the results, we assume that an aggregator

has access to historic data of the charging requirements: hence,

the empirical distribution generated by this data will make up

P. From P and a given size of EV population 𝑁 , an aggregator

wishes to quantify the confidence they have over the aggregate

charging profiles that the population will be able to track. For

example, they may be bidding into markets in which they are paid

to track certain aggregate charging profiles, getting penalized if they

deviate from the agreed charging profile as in [6]. Therefore, they

may wish to quantify the confidence they have on the feasibility of

tracking particular aggregate charging profiles, ideally providing

tight bounds on this confidence. In this section, we provide some

numerical results that showcase the theoretical results presented

in this paper, and provide a simple case study to show how an

aggregator might use these methods in practice.

Validation of the theoretical results. In this first study we showcase

how the strong probabilistic guarantees of Theorem 4.2 hold. To do

so, we first synthesize a distribution P over charging requirements,

uniformly sampling the space of charging requirements Ξ. Note
that, in general, P could be any distribution over Ξ.

Now, fixing 𝜀 and 𝑁 , we construct the distributionally robust

aggregate flexibility set𝐴𝛽 , using Theorem 4.4 and its reformulation

in Theorem 5.2. We then sample a population Ξ̂𝑁 by drawing 𝑁

charging requirements from P. Using Corollary 3.9, we construct the
aggregate flexibility set of the sampled population, namely 𝐹 (Ξ̂𝑁 ).
Finally, we check if 𝐴𝛽 is a subset of 𝐹 (Ξ̂𝑁 ), i.e. ensuring that

all aggregate charging profiles in 𝐴𝛽 are feasible for the sampled

population. We repeat this many times and measure the frequency

that𝐴𝛽 is contained in 𝐹 (Ξ̂𝑁 ). From this frequencywe can compute

an empirical estimate for 𝛽 . We generate aggregate flexibility sets

for populations of EVs with various sizes, over a time horizon with

𝑇 = 24 steps. Constructing robust aggregate flexibility sets for
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Figure 6: Level sets of confidence for the robust aggregate
flexibility sets 𝐴𝛽 , over time horizon of 𝑇 = 2 steps.

different values of 𝜀, we calculate 𝛽 for each of these sets. The

guarantees of Theorem 4.2 from (10) establish an exponentially-

decaying dependence of 𝛽 on the square of 𝜀 — we can observe

this relationship in Fig. 5. Similar results can be shown for the

exponential decay of 𝛽 with respect to 𝑁 .

Characterizing robust flexibility sets. In this second study, we show

how the robust aggregate flexibility sets change with their confi-

dence level, 𝛽 . In order to be able to visualize the sets of interest,

we consider the problem over a trivial time horizon of 𝑇 = 2 steps,

such that 𝐴𝛽 ⊂ R2
. Using the synthesized distribution P from the

previous section, we construct the robust aggregate flexibility set,

𝐴𝛽 , for a fixed population size of 𝑁 = 100, and for various values

of 𝛽 . We plot these robust aggregate flexibility sets in Fig. 6, where

different contours show the corresponding level sets of 𝛽 .

Note that an almost identical plot can also be produced for the

case where 𝛽 is fixed, and we vary 𝑁 to see how the robust ag-

gregate flexibility sets change with the size of the population. By

normalizing the robust aggregate flexibility sets, we can plot the

flexibility allocated to each EV as a function of the population size

𝑁 . This would illustrate how the confidence intervals per EV vary

with different population sizes. Specifically, it highlights that larger

populations achieve higher confidence levels per EV for the same

set of charging profiles. This motivates the utility of aggregators:

with a given confidence level, larger populations of EVs allow for

greater flexibility to be allocated to each individual EV.

Optimization over robust flexibility sets. In this final study, we ex-

amine an aggregator bidding its EV fleet’s flexibility into a market

subject to reliability constraints. Such reliability requirements have

recently been introduced by various system operators; for instance,

the Danish transmission system operator mandates that ancillary

service portfolios demonstrate at least 90% availability [3, 10.2.2].

This directly maps onto setting 1 − 𝛽 = 0.9 in our framework. The

aggregator’s net cost 𝑐 (𝑡) includes terms of the wholesale cost and

revenues from dispatch in the reserve markets: 𝑐 (𝑡) = 𝑐𝑤 (𝑡) −𝑟𝑎 (𝑡).
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Figure 7: Aggregate charging profiles for different confidence
levels when optimizing against a time-varying price signal.

Formally, this leads to solving:

min

𝑢N ∈R𝑇

𝑇∑︁
𝑡=1

𝑐 (𝑡)𝑢N (𝑡)

s.t. 𝑢N ∈ 𝐴𝛽 .

(22)

For this case study we consider a population of 𝑁 = 100 EVs, and

a time horizon of 𝑇 = 48 half-hourly time periods. We generate

the distribution P by sampling 𝑁 charging requirements from a

uniform distribution the parameter spaceΞ. We construct the robust

aggregate flexibility set, 𝐴𝛽 , for various values of 𝛽 . We then solve

the optimization problem for each of these sets, and calculate the

cost of the optimal charging profile, showing the outcomes in Fig. 7.

When choosing the charging profile with higher certainty (1 −
𝛽 = 0.9), the aggregator is less able to exploit the cheaper energy

in the early hours of the day and consumes more energy in the

evening when prices are higher, as they must be conservative in

their estimation of the aggregate flexibility set. Clearly, the cost

of charging increases as the required probability of satisfying the

aggregate charging profile increases. This is to be expected, as the

aggregator is forced to be more conservative over their estimation

of aggregate flexibility sets as the confidence level increases.

7 Implications and Future Work
Extending previous work that gives exact characterizations of aggre-

gate flexibility sets, we have shown how individual flexibility sets

of EVs are members of a family of polytope known as generalized

polymatroids. Computing the Minkowski sum of g-polymatroids is

efficient, allowing us to provide a tractable method for computing

the exact aggregate flexibility set for populations of EVs. Building

on this we assume EV charging requirements are uncertain and i.i.d.

according to a known distribution. We exploit theoretical results

that enable us to characterize robust aggregate flexibility sets, sets

of aggregate charging profiles that can be tracked with a given

confidence level. The theoretical results leverage powerful finite-

sample guarantees that enable us to provide tight bounds on this

confidence. We show explicitly how to compute the variables that

parameterize these sets. Finally, we demonstrate the soundness of

the characterizations by means of numerical experiments and show

how an aggregator might use these methods in practice.

This work can also be used to further motivate the utility of

aggregators. As entities that aggregate the uncertainty of individual

EVs, they can unlockmore flexibility in the populations they control,

than would be possible with individual EVs alone.

Future work will focus on extending the results to more general

charging models. We could consider the case where EVs are allowed

to discharge energy back into the grid. Furthermore, we could con-

sider the case where the charging requirements of the EVs are not

i.i.d.. Maintaining the independence assumption, but allowing EVs

to have different distributions over their charging requirements,

would be a natural and realistic extension. Additionally, there are

various power systems problems that require uncertainty quantifi-

cation techniques when aggregating EV flexibility. One could, for

example, consider newsvendor-like problems, where aggregators

bid the flexibility of uncertain populations of EVs into flexibility

markets — this paper provides a theoretical framework for such

applications.
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A Reformulation of Optimization
A.1 Projection onto empirical distribution
To avoid introducing any unnecessary assumptions about P, we
can center our ball on the projection (via the Wasserstein distance)

of P onto the set of 𝑀-point empirical distributions, and enlarge

the radius of our ambiguity set. Specifically, we use the empirical

distribution that minimizes the Wasserstein distance:

P𝑁 := argmin

P𝑀 ∈P𝑀 (Ξ)
𝑑𝑊 (P𝑀 , P), (23)

as the center of our ambiguity set. Moreover, taking the upper

bound of the triangle inequality,

𝑑𝑊 (P𝑀 ,Q𝑀 ) ≤ 𝑑𝑊 (P𝑀 , P) + 𝑑𝑊 (P,Q𝑀 ), (24)

we update the radius of our ambiguity set with

𝜀𝑀 (𝛽)′ = 𝑑𝑊 (P𝑀 , P) + 𝜀𝑀 (𝛽), (25)

to ensure the probabilistic guarantees of Theorem 4.2 still hold.

There exists a theoretical bound, 𝑑𝑊 (P𝑀 , P) ≤ 𝐶𝑀−1/𝑑
, where 𝑑

is the dimension of the support of P and 𝐶 is a constant that de-

pends on the distribution P. However, in practice, one can evaluate

𝑑𝑊 (P𝑀 , P) exactly, once P𝑀 has been computed.

Furthermore, Pwill most likely be made up of historical data and

as such will already be an empirical distribution, in which case we

simply use this and leave the radius of the ambiguity set unchanged.

A.2 Convexity of sub- and supermodular
functions

In their definitions 𝑝𝜉 and 𝑏𝜉 take |C|, a set of discrete values, as
an argument, and so these functions are not affine. However we

can show that they are bounded by the following:

𝑝𝜉 (A) ≥ max𝑗,𝑘 {0, 𝑒 −𝑇𝑗𝑘𝑚}
𝑏𝜉 (A) ≤ min𝑗,𝑘 {𝑇𝑗𝑘𝑚, 𝑒}

where the equality holds when 𝑡, 𝑡 ∈ Z, and we define:

𝑇𝑗𝑘 := (𝑎 𝑗 𝑡 + 𝑎𝑘𝑡) + 𝑏 𝑗 + 𝑏𝑘 (26)

and 𝑎 𝑗 , 𝑎𝑘 , 𝑏 𝑗 , 𝑏𝑘 are constants are depend on A ⊆ T . Taking the

upper bound on 𝑝𝜉 (A) and the lower bound on 𝑏𝜉 (A) we can

write 𝑝𝜉 and 𝑏𝜉 as the point-wise maximum and minimum of a

finite number of affine concave functions, respectively.

A.3 Reformulation of worst expectation of
submodular function

In Section 5 we showed how the robust aggregate flexibility sets

can be reformulated into finite convex optimization problems. Here

we provide the full details of the reformulation of the submodular

function, 𝑏𝛽 , defining 𝐴𝛽 = 𝑄 (𝑝𝛽 , 𝑏𝛽 ). Viewing the submodular

function as the negative of a supermodular function we can use the

same form for the reformulated optimization problem as the super-

modular function. Therefore, we simply write the reformulation as

a maximization over its negative:

𝑏𝛽 = − max

𝛼𝑖𝑘 ,𝑞𝑖𝑘
−

∑︁
𝜉𝑖 ∈ΞP

𝐾∑︁
𝑘=1

𝛼𝑖𝑘𝑏𝑘

(
𝜉𝑖 −

𝑞𝑖𝑘

𝛼𝑖𝑘

)
s.t.

1

𝑀

𝑀∑︁
𝑖=1

𝐾∑︁
𝑘=1

∥𝑞𝑖𝑘 ∥ ≤ 𝜀′,

𝐾∑︁
𝑘=1

𝛼𝑖𝑘 = 1 ∀𝑖 ≤ 𝑀,

𝛼𝑖𝑘 ≥ 0 ∀𝑖 ≤ 𝑀, ∀𝑘 ≤ 𝐾,

𝜉𝑖 −
𝑞𝑖𝑘

𝛼𝑖𝑘
∈ Ξ ∀𝜉𝑖 ∈ Ψ, ∀𝑘 ≤ 𝐾.

(27)

From which we can explicitly calculate 𝑏𝛽 , can complete our

characterization of the robust aggregate flexibility sets.
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