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Abstract

We address the problem of characterizing the aggregate flexibility
in populations of electric vehicles (EVs) with uncertain charging
requirements. Extending upon prior results that provide exact char-
acterizations of aggregate flexibility in populations of electric ve-
hicle (EVs), we adapt the framework to encompass more general
charging requirements. In doing so we give a characterization of
the exact aggregate flexibility as a generalized polymatroid. Fur-
thermore, this paper advances these aggregation methodologies to
address the case in which charging requirements are uncertain. In
this extended framework, requirements are instead sampled from a
specified distribution. In particular, we construct robust aggregate
flexibility sets, sets of aggregate charging profiles over which we
can provide probabilistic guarantees that actual realized popula-
tions will be able to track. By leveraging measure concentration
results that establish powerful finite sample guarantees, we are able
to give tight bounds on these robust flexibility sets, even in low
sample regimes that are well suited for aggregating small popula-
tions of EVs. We detail explicit methods to tractably compute these
sets. Finally, we provide numerical results that validate our results
and case studies that demonstrate the applicability of the theory
developed herein.
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1 Introduction

Increasing penetrations of intermittent renewable generation are
requiring power system operators to procure large amounts of flex-
ibility in order to mitigate their variability. Furthermore, as demand
in the distribution networks grows, system operators are begin-
ning to rely on these flexible loads to alleviate congestion in their
networks, in particular by implementing local flexibility markets.
Alongside this, EV uptake is rising and will make up a substantial
portion of system demand by the end of the decade. As they are
typically plugged in for more time than they require to charge, they
inherently possess a degree of flexibility in their charging behavior.
Formally, there are a set of charging profiles that an EV may take,
whilst satisfying the charging requirements defined by its user. Un-
der certain charging models, this flexibility set can be represented
as a convex polytope [21]. By controlling their charging profiles,
populations of EVs present a large potential source of flexibility
to power systems. However, owing to complexity and reliability
constraints it is not viable for individual loads to participate in
the flexibility markets, and so hierarchical control architectures
have been proposed [2]. From this, aggregators, entities that collate
flexibility from individual devices and bid it into the markets, have
emerged. In order to participate in these markets, aggregators must
represent the aggregate flexibility in the populations of devices
they control. A growing trend in the literature has been to charac-
terize the aggregate flexibility by computing the Minkowski sum
of the individual flexibility sets of devices in the population. As
calculating the Minkowski sum is NP-hard, most of the work in the
literature focuses on computing inner or outer [1] approximations
of the aggregate flexibility sets. Inner approximations are more
common as they guarantee the feasibility of all aggregate charging
profiles contained within them. Zonotopes are used to approximate
individual flexibility sets in [12], from which Minkowski sums can
be computed efficiently. Similar to this [7] and [15] use homothets
instead of zonotopes. In [13] a union-based approach is developed
that can produce tight approximations, at the expense of added
computational burden. As they do not contain all feasible aggregate
charging profiles, inner approximations do not guarantee optimal-
ity. Whilst there have been exact characterizations of the aggregate
flexibility in populations of EV such as [17] and [19], these methods
fail to scale well in the length of the time horizon. Thus far, only
[11] and [14] offer exact characterizations that are computationally
tractable for long time horizons. However, to scale well these works
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Figure 1: A schematic of the work presented in this paper. We are provided with a distribution over charging requirements P.
From this distribution, a population of N charging requirements is obtained by drawing N independent samples from P. Each
of the charging requirements generate their own individual flexibility sets F (Ei). The aggregate flexibility set for the population
is the Minkowski sum of these, F(Z;) = Zfl F (fi), characterizing this is the subject of Section 3. This aggregate flexibility set is a
random object and so we would like define robust sets AP in which we have varying confidence that F(Z;) will be contained in.
We derive these robust sets in Section 4 and provide a tractable reformulation for their computation in Section 5.

require a certain amount of homogeneity in the populations they
aggregate.

All of these methods assume full knowledge of the charging
requirements of the EVs they aggregate. However, in most realistic
scenarios the charging requirement of an EV will be unknown to
the aggregator before it plugs in, and so aggregators will need to
estimate the aggregate flexibility sets. Historical datasets of EV
charging requirements are often available to aggregators, such as
[9], and can be used to inform these estimates. To this end, aggre-
gators require techniques to characterize aggregate flexibility sets
from historic data and uncertainty quantification methods for quan-
tifying the confidence they have in these sets. In some scenarios,
aggregators will be aggregating large populations, in which case
uncertainties can largely be ignored. However, with the advent of
local flexibility markets aggregators will have to characterize the
flexibility in small populations of EVs, where there are uncertainties
[8]. In [6] the problem of bidding into energy markets with min-
imum reliability requirements is considered. Similar to the work
presented in this paper, the authors address this by formulating it
as a distributionally robust joint chance-constrained optimization
problem, however they only characterize availability of populations
of EVs rather than the population’s flexibility over time. Building on
this, [22] introduces a novel approach for deriving a distributionally
robust inner approximation of the flexibility sets for distributed
energy resources. While effective for general DERs, the focus on
network-wide integration differs from the individual device-based
flexibility modeling predominant in EV-specific contexts. In [16],
the authors approximate the aggregate flexibility set with an ellip-
soid, which is built upon a convex quadratic classifier trained on
a historic dataset. This data-driven approach provides an efficient

method of calculating an approximated aggregate flexibility set,
however the methods here do not establish any theoretical proba-
bilistic guarantees. In [20], the uncertainties of EVs are also modeled
under a distributionally robust joint chance-constrained program-
ming framework. However, the uncertainty sets constructed could
be improved as they are derived from inner approximations of the
Minkowski sum.

Given these limitations on the exactness of approximations and
the rigor of uncertainty modeling, this paper makes the following
contributions:

e We derive a novel, efficient method of computing the aggre-
gate flexibility set for large populations of EVs over long time
horizons by expressing each EV’s feasible charging region as
a generalized polymatroid. This family of polytopes is closed
under Minkowski summation. Leveraging this property we
obtain an exact representation of the aggregate flexibility.
Unlike previously proposed methods, our approach does
not resort to approximations, thus preserving all feasible
solutions and soundness of the characterization.

¢ Building on this exact characterization, we exploit measure
concentration results to bound the uncertainty in EV charg-
ing requirements. Crucially, these results remain tight even
in low-sample regimes, making them highly applicable to
scenarios involving smaller EV populations or limited histor-
ical data. Our approach thus yields distributionally robust
flexibility sets, ensuring high-confidence feasibility without
over constraining the available flexibility.

Fig. 1 offers a high-level schematic for the work presented here.
The rest of the paper is structured as follows: Section 2 formally
introduces our setting, including the model for EV charging, the



Robust Aggregation of Electric Vehicle Flexibility

concept of individual and aggregate flexibility, and the uncertainty
assumptions. In Section 3 we introduce generalized polymatroids,
a family of polytopes that contain all individual EV flexibility sets.
We use properties of these polytopes to provide a fast aggregation
method. Moving to the stochastic setting, in Section 4, we establish
probabilistic guarantees built on measure concentration results,
and use them to derive conditions on the parameters that define
the robust flexibility sets. Section 5 offers a derivation of how to
compute the parameters defining these robust flexibility sets. We
reformulate the associated optimization problems, demonstrating
how to handle distributionally robust considerations efficiently.
Numerical simulations are used to validate the theoretical results
of this paper in Section 6, along with a topical case study to show
the practical applicability of the theory. Finally we discuss the
implications of this work and give directions for future work in
Section 7.

Notation

We let calligraphic letters define finite sets, e.g. 7 = {0, .., T — 1}.
For a vector x € RT and ¢ € 7", we let x(t) denote the ¢-th element
of x. Foraset A C T, we let x(A) = X1 4 x(t), and x(A) = 0 for
A = 0. Uppercase letters denote convex polytopes e.g. F c RT, bold
face letters, P, denote probability distributions, and hatted letters,
£, denote random variables. 3, denotes both sums and Minkowski
sums, depending on the context.

2 Problem Formulation

In this section, we first introduce our model for EV charging and
formalize our notion of flexibility, both in the context of individual
EVs and for aggregations of them. We then introduce the problem of
robust aggregation. In the following, we consider an aggregator that
has direct control over the charging of a population of N EVs. We
denote the set of EVsasi € N = {1,..., N}. We will consider the
problem over a finite time horizon, and we discretize this horizon
into T time steps each of duration §. We denote the set of time steps
aste T ={0,...,T — 1}.

2.1 Individual Flexibility Sets

Let u : R — R denote the charging profile of an EV, such that u(r)
is the power consumption at time 7. We assume that the EV’s power
consumption is constant in each timestep so that u is piecewise
constant, i.e. u : 7 — R, and we instead write u € RT. We let
x € RT denote the state of charge of the EV in each time step, such
that x(t) is the state of charge in timestep ¢. The charging dynamics
of the EV are given by:

x(t+1) = x(t) +u(t)d. 1)

Without loss of generality, we assume § = 1 henceforth. Also, by
convention, we assume that the state of charge of the EVatt =0
is x(0) = 0. This assumption is also without loss of generality, as
we can simply shift the state of charge constraints in (3) when this
does not hold.

In this paper we restrict the EVs to a charging-only regime, i.e.
we consider no vehicle-to-grid capabilities. The maximum rate at
which the EV may charge is denoted m. An EV will arrive at and
depart from the charging station within the time horizon. We denote
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its arrival and departure times as ¢, € [0, T), respectively, and let
C = [t,f]NT C T denote its connection time, namely the finite set
of time steps in which the EV is connected to the charging station.
At all time steps during its connection time, the EV may charge up
to its maximum rate, whereas for all other time steps the EV does
not charge:

0<u(t)<m VteC, (2a)
u(t) =0 VieT \C. (2b)

Finally, we let e and e denote the lower and upper bound on the
EV’s state of charge at the final time:

e<u(T)<e (3)

where u(7") denotes the sum over all time steps, as introduced in
the notation section. Note that (2) ensures that the EV only charges
during its connection times. For ease of notation we collect all the
parameters relating to the EV charging requirements into the tuple
& = (e, & t,t, m). Naturally, for some values of &, there will not exist
any feasible charging profiles, and so we define E to be the set of
charging requirements that are feasible:

[1]

- 0<t<t<T
lemeanim| ZEELTL L @

Using this model, we consolidate the constraints of (2) and (3) to
define the set of charging profiles an EV may take whilst satisfying
its charging requirements:

Definition 2.1. For an EV with charging parameters ¢, the indi-
vidual flexibility set, denoted, F(£) c RT, is the set of all feasible
charging profiles for the EV:

0<u(t)<0 VteT \C
0<u(t)<mVteC . (5)
e<u(T)<e

F(¢):={ueRl

The individual flexibility set, as defined above, is the intersection
of a collection of half-spaces and so is a convex polytope in R” .

2.2 Aggregate Population Flexibility Sets
We now consider the case where we have a population of N EVs,
each with charging parameters & for i € N, where u; denotes
the charging profile of the ith EV. We let Ey denote the set of
the charging parameters of all EVs in the population such that
En ={&,.... N}

The aggregate charging profile, u s, of the population is given by
the sum of the individual charging profiles of EVs in the population:

N
an=u
i=1

Definition 2.2. For a population of EVs with charging parameters,
=N, the aggregate flexibility set, denoted F(Zp), is the set of all
feasible aggregate charging profiles of the population:

N
F(EN) = {uN eRT |uy = Zu u; € F(&) Vi}. (6)

k=1
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By definition, F(Ep) is the Minkowski sum of the individual
flexibility sets of the EVs in the population:

N
F(EN) = ) F(&). W)
i=1

In general, however, an aggregator will have to make decisions
about the population of EVs before they connect, and so will not
have access to the charging requirements of the EVs in the popula-
tion. However, they will have access to historic data on the charging
requirements of the EVs. Therefore, we model the charging require-
ments as i.i.d. random variables according to a given distribution P
that is supported on E.

We denote the set of random charging requirements of the pop-
ulation as Ey = {gi}igN C E: this set is a random variable dis-
tributed according to PN. Hence, the polytope, F(Zy), generated
by Zn, is a random object that is governed by the distribution PN .
The aggregator will need to optimize over F(Zy ), before observing
En. Therefore it is useful for aggregators to understand which ag-
gregate charging profiles can be satisfied by the population within
certain confidence levels. Characterizing sets of this type is the
main focus of this paper.

Definition 2.3. For a population of N EVs with charging require-
ments 2, distributed according to PV, the robust aggregate flexibil-
ity set at confidence level f, denoted A‘]g N
charging profiles that can be satisfied with a probability of 1 — :

AL = {un € RT BV {Ey s uy € F(En)} 2 1- B).

is the set of all aggregate

Here, we emphasize that A‘g’ N represents a set of aggregate
charging profiles for a population of N electric vehicles, each with
charging requirements sampled from distribution P, for which we
can guarantee will be feasible with a confidence level of 1 - f. In the
following we assume the distribution over charging requirements
P and the size of the population N is fixed, and so, for clarity, we

will drop the superscripts P and N from AP

p N and simply refer to
itas AP,

2.3 Limitations

Although the proposed model offers a realistic treatment of EV
charging requirements, it is subject to some limitations. Firstly, we
assume that the EV charging requirements are i.i.d. according to
the common distribution P. This assumption may hold in some
contexts, for example, in a charging station serving a homogeneous
fleet. However, in scenarios where aggregators have built up a
profile of individual vehicles in the population, it becomes more
appropriate to model each with distinct distributions. In such cases,
the i.i.d. assumption becomes limiting and may overlook important
heterogeneity.

Secondly, our model restricts EVs to charging only, with no
allowance for discharging. Generalized polymatroids are expressive
enough to faithfully model discharging. However, this adds another
layer of complexity to the characterizations. The focus of this paper
is on uncertainty quantification in the aggregate flexibility sets,
and so we work with this simpler, but less expressive, charging
model. Applying this work to the more general case of EVs with
discharging capabilities is an interesting avenue for future work.
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Figure 2: Polyhedra generated by the paramodular pair (p, b).
The red and blue lines are the submodular and supermodular
base polyhedra. The red and blue shaded regions are the
submodular and supermodular polyhedra, S(b) and S’ (p).
The g-polymatroid, Q(p, b), is generated by the intersection
of S(b) and S’ (p).

3 Aggregation of Flexibility

In this section, we provide a characterization of the aggregate flexi-
bility set defined in (6). We obtain this by computing the Minkowski
sum of the individual flexibility sets. In general, computing Minkowski
sums is an NP-hard problem, however in this section we provide
a tractable method for its computation. This is done by showing
that the individual flexibility sets, as defined in (5), are members of
a family of polytopes that are closed under Minkowski summation,
and whose Minkowski sum can be computed efficiently.

We start by introducing some concepts that will be relevant
for our aggregation method. In the following we will consider set
functions defined over the set 7 = {0,...,T — 1} , where T is the
time horizon of the problem.

Definition 3.1 (Submodular functions). [5] A submodular function
b:27 - R, is a set-function defined over the subsets of a finite set
7, which satisfies the inequality

b(AU{e}) —b(A) 2 b(BU{e}) - b(B). 3)
for all subsets A C B C T andee T \ B.

One can also define a supermodular function by reversing the
inequality in (8), or as the negative of a submodular function: if
b is submodular then p = —b is supermodular. The submodular
polyhedron associated with a submodular function, b, is defined as:

S(b) = {x eRT | x(A) < b(A), VA C T}.

The intersection of this with the plane x(7°) = b(7") is called the
base polyhedron of b:

B(b) = {x € RT | x(A) < b(A), VA C T,x(T) = b(T)}.

Similar definitions can be made for supermodular functions, where
the supermodular functions bound the polyhedra from below.
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Definition 3.2 (Paramodularity). [5] A pair (p, b) of set-functions
is paramodular if p(0) = b(0) = 0, p is supermodular, b is submod-
ular, and for all A, B C T

b(A) - p(B) 2 b(A\ B) - p(B\ A).

The intuition behind paramodularity is that it restricts the base
polyhedra of the submodular function to be contained within the
supermodular polyhedra of the supermodular function, and vice
versa.

Definition 3.3 (Generalized polymatroids). [5] For a paramodular
pair (p, b), the polyhedron Q(p, b) is called a generalized polyma-
troid (g-polymatroid for short), where:

O(p,b) == {x e RT | p(A) < x(A) < b(A) VA C T}.

Essentially, a g-polymatroid is the intersection of a supermod-
ular polyhedron and a submodular polyhedron, generated by a
paramodular pair. A visual depiction of this construction is pro-
vided in Fig. 2.

Definition 3.4 (Plank). [5] Given a, f € R with a < f, the plank
K(a,p)is
K(a.p) = {xeRT |a <x(T) < f}.

We now turn our attention to the individual flexibility sets intro-
duced in the previous section. One can write an individual flexibility
set as the intersection of a cube and a plank: F(£) = F/(£) NK (e, ),
where:

F'(§) := {u eRrT

0<u(t)<0 VieT\C
0<u(t)<mVteC ’

©

LEMMA 3.5. F/ (&) is the g-polymatroid Q(p’,b’), where:
PE(A) =0,
bé(ﬂ) =|ANC|m.
Here, | A| denotes the cardinality of the set ‘A.
PROOF. F’(¢)isa cube of side length m in the subspace RC C RT

The submodular function that generates this cube is bé(ﬂ) =|AnN

C|m. F’(¢) is bounded from below by 0 for all A C 7", and so
p;{ (A) = 0. The paramodularity of the pair (pé, bé) holds trivially.
’ ]

We can now use the following theorem to show that the intersec-
tion of F/(£) and K (e, €), and hence F({), is a g-polymatroid. Fig. 3
provides a graphical illustration of the theorem.

THEOREM 3.6 (PLANK INTERSECTION THEOREM). [5, Theorem 14.3.13]

The intersection of the g-polymatroid Q(p’, b’), and the plank K (a, )
is a g-polymatroid Q(p, b), where:

p(A) = max{p’ (A),a = b"(T \ A)}
b(A) = min{b’ (A), f - p' (T \ A)}.

CoROLLARY 3.7. F(£) is the g-polymatroid Q(pg, bi), where:
pe(A) = max{0,e - |C \ Alm},
bg(A) == min{|A N C|m,e}.

Proor. This follows directly from Theorem 3.6, Lemma 3.5 and
using the identity (T \ A)NC|=|C\A|, VC C T. |
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Figure 3: A cube F’ (&) (red shaded region), and a plank K (e, ¢)
(blue shaded region), intersecting to form the g-polymatroid
Q(p’,b") (region outlined in blue).

Now, with our characterization of the individual flexibility sets as
g-polymatroids we can exploit some of the properties of this family
of polytopes. In particular, we can use the following theorem to
efficiently compute the Minkowski sum of a set of g-polymatroids.

THEOREM 3.8 (SUM THEOREM). [5, Theorem 14.2.15]
The Minkowski sum of a set of g-polymatroids is given by

Z Q(pi,bi) =Q (Zpi, Z bi) .

COROLLARY 3.9. The aggregate flexibility set, F(EN), is the g-
polymatroid Q(pz,, b=y ), where:

N N
pan (A) = Y pe,(A) = Y max{0,¢; - |C; \ Almy},
i=1 i=1

N N
bz (A) = Z be, (A) = Z min{|A N Cj|m;, &}
i=1 i=1

This result provides a tractable method of computing the aggre-
gate flexibility set, F(E), as the Minkowski sum of the individual
flexibility sets. The representation of F(Zp), characterized as a
generalized polymatroid, involves an exponential number of con-
straints, which may appear computationally intractable to handle.
Nevertheless, these polytopes are well-studied, and various opti-
mization problems can be solved in polynomial time. For a detailed
discussion the reader is referred to [5].

4 Aggregation Under Uncertainty

We now turn to the case in which charging requirements are uncer-
tain, but i.i.d. according to a known distribution P. In practice, we
assume that aggregators have a large amount of historical data of
charging requirements, from which they can construct the known
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P. We denote the set of random charging requirements of the pop-
ulation as Zp := {f,-}iSN C E. This set is a random variable dis-
tributed according to PN. As the population charging requirements
are random, the aggregate flexibility set generated by them, F(Z ),
will also be a random object. And so we focus on characterizing a
robust set of aggregate charging profiles that can be tracked with
confidence 1 — 5, namely AP from Definition 2.3.

To do so, we first characterize an ambiguity set of sample pop-
ulations that will be realized with a given confidence. Let Qéw
denote the discrete empirical probability distribution generated by
the sample population Zp:

1
QéN = N AZ 551”
giEEN

where § 3 is the Dirac distribution that concentrates mass on &;.

i

Definition 4.1. The Wasserstein distance between two distribu-
tions P and Q is defined as:

dw Q) =igf [ e~ £linazde),

where II is a joint distribution on E x E with marginals P and Q,
and ||€ — &|| is an arbitrary norm on E.

Intuitively, the Wasserstein distance represents the minimum
work required to move the probability mass of P to the distribution
Q. The reader is referred to [18] for a more complete discussion of
the Wasserstein distance. With these definitions we can tap into
the following result.

THEOREM 4.2 (MEASURE CONCENTRATION). [4, Theorem 2]:
PN {éN rdw (P,Qz, ) 2 f} <p
where forall N > 1

cre~c:Ne* ife<1
b= (10)

a
cre~Ne® ife >

and c1, ¢z and a are positive constants that depend on P and the norm
used to define the Wasserstein distance.

We can now define an ambiguity set, B?, as the set of empiri-
cal distributions that lie inside a Wasserstein ball of radius exn ()
centered on P:

B = {0z, |aw(®.Qz) < en(B), (1)

where ex(f) is simply given by the inverse of (10). With a slight
abuse of notation, we will use £y € B to denote that the empirical
distribution generated by the sample population = lies within the
Wasserstein ball Bﬁ, ie.

EyeBf = dw (P,Qz,) < en (). (12)

Using Theorem 4.2 we can give the following probabilistic guar-
antees over our ambiguity set:

PN{éN:éNeBﬁ}zl—ﬁ.

Mukhi et al.

Remark. This result is particularly well-suited to the problem at
hand. The measure concentration result offers tight bounds when
the sample size is small. In some use cases aggregators may have to
optimize and coordinate the charging of EVs that are connected to
the same low-voltage substation. For such cases the number of EVs
in the population, N, is limited, making it crucial to have guarantees
that perform effectively for small sample sizes. This work can be
compared to the likes of [10], with one key distinction: we assume
to have knowledge of the distribution over charging requirements
P, and access to a finite (possibly small) population that samples the
distribution P. Hence the ambiguity sets referred to in this paper
are centred on P and we are searching for “worst-case” populations
that generate empirical distributions, Qé , that lie within this set.
This is opposed to [10], which instead centers the ambiguity set
on the empirical distribution of the sampled data and searches for
“worst-cases” of the true distribution.

Using BP as our ambiguity set, we want to ensure that for all
populations that generate empirical distributions that lie in B?,
the aggregate flexibility sets associated to them contain the robust
aggregate flexibility set AP, Additionally, we want to ensure that
this robust aggregate flexibility set is the largest set that satisfies
this property.

LEmMA 4.3. The robust aggregate flexibility set can be character-
ized as
A= () FEN) (13)

éNGBﬁ

Proor. From (13), AP is defined as the intersection of a collec-
tion of polytopes. Consequently, A? is a subset of each of these
polytopes, i.e.

AP c F(BN), ¥V En eBF,

and so we guarantee that AP is contained within all aggregate
flexibility sets generated by sample populations that lie in the am-
biguity set. Moreover, (13) defines the largest set that fulfills this
property. a

From this implication, we can characterize AP by calculating the
flexibility sets for all elements in our ambiguity set and taking their
intersection. Using this theorem we can characterize the robust
aggregate flexibility set, AP asa g-polymatroid.

THEOREM 4.4. The robust aggregate flexibility set, AP is the g-
polymatroid:

AP = Q(pP bP), (14)
where:
PP(A) = max ps (A) (15)
ENEBﬁ
bP(A) = min bs (A). (16)
=yeBsf N

Proor. For two g-polymatroids Q(pa, bg) and Q(py, bp), the in-
tersection of the two is a g-polymatroid Q(p, b¢), where:
pe(A) = max{pa(A), pp(A)}
be(A) == min{by(A), bp(A)} VACT.
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Figure 4: A visualization of the proof of Theorem 4.4. The
robust set is the intersection of the aggregate flexibility sets
generated by populations that lie in the ambiguity set. Here,
we show the aggregate flexibility sets associated with two
sample populations, é}\[ and éi[ The aggregate flexibility
sets generated by them are, F (é}v) and F (éjzv), and their in-
tersection, A?. The robust set is defined by the maximum of
the supermodular functions (in this case =3 ) and minimum

of the submodular functions (in this case bz, ). For clarity we
=N

only show the sub- and supermodular functions for A = {1}.

Evaluating the maximum of pg (A) and minimum of bs,, (A)

over all elements in the ambiguity set BA gives the required result.
]

Fig. 4 provides a visualization of the proof of this theorem.

5 Tractable Reformulation

Having introduced a theoretical framework for uncertainty quan-
tification of aggregate flexibility sets, in this section we turn to the
explicit computation of the parameters that define these sets. Specif-
ically, this section demonstrates how the optimization problems
defining the supermodular function pﬁ and submodular function b?
from Theorem 4.4, which together parameterize the g-polymatroid
Q(pﬁ ,bP), can be recast as finite convex programs. For brevity we
will only focus on a reformulation of the supermodular function,
pﬁ . Results for the reformulation of the submodular function can
be found in the appendix. We do this by considering, for a given
subset A C T, the maximization problem

PP(A) = max pz (A), 17)
EN eBA

where we are optimizing over empirical distributions QéN that lie
within B , the Wasserstein ball of radius ¢ centred at PP. For clarity
in notation, we drop A in the notation of Pz, (A), denoting it
simply as pz,,- Using the definition of pz,,» We can write it in terms
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of the expectation of py over the empirical distribution QéN:

1 1
NPT N D, pa= Eevq,,, el (18)

giEéN

And so we rewrite our optimization problem as a maximization
of the expectation of py with respect to the empirical distribution

QéN:
P =N max Eg . [pe]. (19
P EneBB Qs 43 )

As yet, we have not put any assumptions on the form of P. How-
ever, to make use of results in the literature, it is useful to have our
Wasserstein ball centred on an empirical distribution. Here we as-
sume that P is given as an M-point empirical distribution, however
this is not necessary as we discuss in Appendix A.1. We write the
support of this empirical distribution as Ep = {&1,..., Em}-

Definition 5.1 (Convexity of p(£), E). We say that the system of
P and E is convex if:

(1) 2 € R? is a convex and closed set
(2) pg can be written as the point-wise maximum of a finite
number of affine concave functions, i.e.

p(&) = gcngalg{pk('f)}, (20)

where py. (€) is an affine concave function, for all k < K.

From its definition in (4), Z is a convex and closed set. From
Corollary 3.7, p¢ is clearly a point-wise maximum of a set of func-
tions. However, since it depends on the cardinality of the set C, it
is not concave. This is addressed in detail in Appendix A.2.

From this, we can now invoke the following theorem and adapt
it to suit our requirements.

THEOREM 5.2 (WORST-CASE DISTRIBUTIONS). [10, Theorem 4.4]
If E and p(&) form a convex system, then the worst-case expectation
(19) coincides with the optimal value of the finite convex program

K
pP = max Z ik Pk (fi - %)
=1 t

aik’qikfe px a
Gi€zp

(1]

1 M K
— < &
st 2z 2, 2 Il < ¢,
i=1 k=1
K (21)
Daw=1 Vis<M,
k=1

@i =20 Vi<M, Vk <K,

-3k c5 vy ew, vk <K
Qik
Theorem 5.2 provides a tractable reformulation of the optimiza-
tion problem (19), allowing us to compute the worst-case expecta-
tion of the supermodular function pﬁ efficiently. The reformulation
of the submodular function b# can be done in a similar manner,
details of this can be found in Appendix A.3.
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Figure 5: Empirical results showing the probability of not
being able to satisfy all aggregate charging profiles within
the robust set A?, for different values of ¢ and N.

6 Applications and Numerical Results

We now showecase the utility of the robust aggregation methods laid
out in this work. To use the results, we assume that an aggregator
has access to historic data of the charging requirements: hence,
the empirical distribution generated by this data will make up
P. From P and a given size of EV population N, an aggregator
wishes to quantify the confidence they have over the aggregate
charging profiles that the population will be able to track. For
example, they may be bidding into markets in which they are paid
to track certain aggregate charging profiles, getting penalized if they
deviate from the agreed charging profile as in [6]. Therefore, they
may wish to quantify the confidence they have on the feasibility of
tracking particular aggregate charging profiles, ideally providing
tight bounds on this confidence. In this section, we provide some
numerical results that showcase the theoretical results presented
in this paper, and provide a simple case study to show how an
aggregator might use these methods in practice.

Validation of the theoretical results. In this first study we showcase
how the strong probabilistic guarantees of Theorem 4.2 hold. To do
so, we first synthesize a distribution P over charging requirements,
uniformly sampling the space of charging requirements =. Note
that, in general, P could be any distribution over =.

Now, fixing ¢ and N, we construct the distributionally robust
aggregate flexibility set AP, using Theorem 4.4 and its reformulation
in Theorem 5.2. We then sample a population Zx by drawing N
charging requirements from P. Using Corollary 3.9, we construct the
aggregate flexibility set of the sampled population, namely F(Zy).
Finally, we check if AP is a subset of F(Ey), ie. ensuring that
all aggregate charging profiles in AP are feasible for the sampled
population. We repeat this many times and measure the frequency
that A? is contained in F(£ ). From this frequency we can compute
an empirical estimate for 5. We generate aggregate flexibility sets
for populations of EVs with various sizes, over a time horizon with
T = 24 steps. Constructing robust aggregate flexibility sets for
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Figure 6: Level sets of confidence for the robust aggregate
flexibility sets A?, over time horizon of T = 2 steps.

different values of ¢, we calculate f for each of these sets. The
guarantees of Theorem 4.2 from (10) establish an exponentially-
decaying dependence of f on the square of ¢ — we can observe
this relationship in Fig. 5. Similar results can be shown for the
exponential decay of  with respect to N.

Characterizing robust flexibility sets. In this second study, we show
how the robust aggregate flexibility sets change with their confi-
dence level, B. In order to be able to visualize the sets of interest,
we consider the problem over a trivial time horizon of T = 2 steps,
such that AP c R2. Using the synthesized distribution P from the
previous section, we construct the robust aggregate flexibility set,
AP for a fixed population size of N = 100, and for various values
of f. We plot these robust aggregate flexibility sets in Fig. 6, where
different contours show the corresponding level sets of f.

Note that an almost identical plot can also be produced for the
case where f is fixed, and we vary N to see how the robust ag-
gregate flexibility sets change with the size of the population. By
normalizing the robust aggregate flexibility sets, we can plot the
flexibility allocated to each EV as a function of the population size
N. This would illustrate how the confidence intervals per EV vary
with different population sizes. Specifically, it highlights that larger
populations achieve higher confidence levels per EV for the same
set of charging profiles. This motivates the utility of aggregators:
with a given confidence level, larger populations of EVs allow for
greater flexibility to be allocated to each individual EV.

Optimization over robust flexibility sets. In this final study, we ex-
amine an aggregator bidding its EV fleet’s flexibility into a market
subject to reliability constraints. Such reliability requirements have
recently been introduced by various system operators; for instance,
the Danish transmission system operator mandates that ancillary
service portfolios demonstrate at least 90% availability [3, 10.2.2].
This directly maps onto setting 1 — f# = 0.9 in our framework. The
aggregator’s net cost ¢(¢) includes terms of the wholesale cost and
revenues from dispatch in the reserve markets: c(t) = ¢4, (t) —rg(2).
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Figure 7: Aggregate charging profiles for different confidence
levels when optimizing against a time-varying price signal.

Formally, this leads to solving:

T
min c(Hupn(t)
un€RT ; N (22)
st. upn € AP,

For this case study we consider a population of N = 100 EVs, and
a time horizon of T = 48 half-hourly time periods. We generate
the distribution P by sampling N charging requirements from a
uniform distribution the parameter space =. We construct the robust
aggregate flexibility set, AP for various values of p. We then solve
the optimization problem for each of these sets, and calculate the
cost of the optimal charging profile, showing the outcomes in Fig. 7.

When choosing the charging profile with higher certainty (1 —
B =0.9), the aggregator is less able to exploit the cheaper energy
in the early hours of the day and consumes more energy in the
evening when prices are higher, as they must be conservative in
their estimation of the aggregate flexibility set. Clearly, the cost
of charging increases as the required probability of satisfying the
aggregate charging profile increases. This is to be expected, as the
aggregator is forced to be more conservative over their estimation
of aggregate flexibility sets as the confidence level increases.

7 Implications and Future Work

Extending previous work that gives exact characterizations of aggre-
gate flexibility sets, we have shown how individual flexibility sets
of EVs are members of a family of polytope known as generalized
polymatroids. Computing the Minkowski sum of g-polymatroids is
efficient, allowing us to provide a tractable method for computing
the exact aggregate flexibility set for populations of EVs. Building
on this we assume EV charging requirements are uncertain and i.i.d.
according to a known distribution. We exploit theoretical results
that enable us to characterize robust aggregate flexibility sets, sets
of aggregate charging profiles that can be tracked with a given
confidence level. The theoretical results leverage powerful finite-
sample guarantees that enable us to provide tight bounds on this
confidence. We show explicitly how to compute the variables that
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parameterize these sets. Finally, we demonstrate the soundness of
the characterizations by means of numerical experiments and show
how an aggregator might use these methods in practice.

This work can also be used to further motivate the utility of
aggregators. As entities that aggregate the uncertainty of individual
EVs, they can unlock more flexibility in the populations they control,
than would be possible with individual EVs alone.

Future work will focus on extending the results to more general
charging models. We could consider the case where EVs are allowed
to discharge energy back into the grid. Furthermore, we could con-
sider the case where the charging requirements of the EVs are not
i.i.d.. Maintaining the independence assumption, but allowing EVs
to have different distributions over their charging requirements,
would be a natural and realistic extension. Additionally, there are
various power systems problems that require uncertainty quantifi-
cation techniques when aggregating EV flexibility. One could, for
example, consider newsvendor-like problems, where aggregators
bid the flexibility of uncertain populations of EVs into flexibility
markets — this paper provides a theoretical framework for such
applications.

Acknowledgments

The authors are grateful to Georg Loho for insightful guidance on
g-polymatroids, to Yannik Schnitzer for his comments on earlier
drafts, and to Clara Dijkstra for her helpful contributions to one
of the proofs. The work of C. Qu is supported in part from NSFC
through 723B1001. The work of P. You is supported in part from
NSFC through 723B1001, 72431001, 72201007, T2121002, 72131001.

References

[1] Suhail Barot and Josh A Taylor. 2017. A concise, approximate representation of
a collection of loads described by polytopes. International Journal of Electrical
Power & Energy Systems 84 (2017), 55-63.

[2] Duncan S Callaway and Ian A Hiskens. 2011. Achieving Controllability of Electric
Loads. Proc. IEEE 99, 1 (2011), 184-199. https://doi.org/10.1109/JPROC.2010.
2081652

[3] Energinet. 2024. Prequalification of Units and Aggregated Portfo-
lios (Doc. 13/80940-106 - Offentlig/Public, Version 2.1.2). https:
//en.energinet.dk/media/ox0gqmvw/gaeldende-prequalification- of-units-
and-aggregated- portfolios.pdf

[4] Nicolas Fournier and Arnaud Guillin. 2015. On the rate of convergence in
Wasserstein distance of the empirical measure. Probability Theory and Related
Fields 162, 3-4 (8 2015), 707-738. https://doi.org/10.1007/S00440-014-0583-7/
METRICS

[5] Andrés Frank. 2011. Connections in combinatorial optimization . In Connections
in combinatorial optimization. Oxford University Press, Oxford.

[6] Peter AV. Gade, Henrik W. Bindner, and Jalal Kazempour. 2024. Leveraging P90
Requirement: Flexible Resources Bidding in Nordic Ancillary Service Markets. In
2024 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 505-510. https://doi.org/
10.1109/SmartGridComm60555.2024.10738114

[7] He Hao, Borhan M Sanandaji, Kameshwar Poolla, and Tyrone L Vincent. 2015.
Aggregate Flexibility of Thermostatically Controlled Loads. IEEE Transactions on
Power Systems 30, 1(2015), 189-198. https://doi.org/10.1109/TPWRS.2014.2328865

[8] Ioannis Lampropoulos, Tarek Alskaif, Jelle Blom, and Wilfried van Sark. 2019.

A framework for the provision of flexibility services at the transmission and

distribution levels through aggregator companies. Sustainable Energy, Grids and

Networks 17 (2019), 100187. https://doi.org/10.1016/j.segan.2018.100187

Zachary J Lee, Tongxin Li, and Steven H Low. 2019. ACN-Data: Analysis and

Applications of an Open EV Charging Dataset. In Proceedings of the Tenth ACM

International Conference on Future Energy Systems (e-Energy ’19). Association for

Computing Machinery, 139-149. https://doi.org/10.1145/3307772.3328313

Peyman Mohajerin Esfahani and Daniel Kuhn. 2018. Data-driven distributionally

robust optimization using the Wasserstein metric: performance guarantees and

tractable reformulations. Mathematical Programming 171, 1-2 (9 2018), 115-166.

https://doi.org/10.1007/S10107-017-1172-1/FIGURES/10

—_
2

[10


https://doi.org/10.1109/JPROC.2010.2081652
https://doi.org/10.1109/JPROC.2010.2081652
https://en.energinet.dk/media/ox0gqmvw/gaeldende-prequalification-of-units-and-aggregated-portfolios.pdf
https://en.energinet.dk/media/ox0gqmvw/gaeldende-prequalification-of-units-and-aggregated-portfolios.pdf
https://en.energinet.dk/media/ox0gqmvw/gaeldende-prequalification-of-units-and-aggregated-portfolios.pdf
https://doi.org/10.1007/S00440-014-0583-7/METRICS
https://doi.org/10.1007/S00440-014-0583-7/METRICS
https://doi.org/10.1109/SmartGridComm60555.2024.10738114
https://doi.org/10.1109/SmartGridComm60555.2024.10738114
https://doi.org/10.1109/TPWRS.2014.2328865
https://doi.org/10.1016/j.segan.2018.100187
https://doi.org/10.1145/3307772.3328313
https://doi.org/10.1007/S10107-017-1172-1/FIGURES/10

HSCC 25, May 6-9, 2025, Irvine, CA, USA

[11] Karan Mukhi and Alessandro Abate. 2023. An Exact Characterisation of Flexibility
in Populations of Electric Vehicles. 2023 62nd IEEE Conference on Decision and
Control (CDC) (12 2023), 6582-6587. https://doi.org/10.1109/CDC49753.2023.
10383521
Fabian L. Miiller, Jacint Szabo, Olle Sundstrom, and John Lygeros. 2019. Ag-
gregation and disaggregation of energetic flexibility from distributed energy
resources. IEEE Transactions on Smart Grid 10, 2 (3 2019), 1205-1214. https:
//doi.org/10.1109/TSG.2017.2761439
[13] Md Salman Nazir, Ian A Hiskens, Andrey Bernstein, and Emiliano Dall’Anese.
2018. Inner Approximation of Minkowski Sums: A Union-Based Approach and
Applications to Aggregated Energy Resources. In 2018 IEEE Conference on Decision
and Control (CDC). 5708-5715. https://doi.org/10.1109/CDC.2018.8618731
Nanda Kishor Panda and Simon H Tindemans. 2024. Efficient quantification and
representation of aggregate flexibility in Electric Vehicles. Electric Power Systems
Research 235 (2024), 110811. https://doi.org/10.1016/j.epsr.2024.110811
Feras Al Taha, Tyrone Vincent, and Eilyan Bitar. 2024. An Efficient Method for
Quantifying the Aggregate Flexibility of Plug-In Electric Vehicle Populations.
IEEE Transactions on Smart Grid (2024), 1. https://doi.org/10.1109/TSG.2024.
3384871
Sina Taheri, Vassilis Kekatos, Sriharsha Veeramachaneni, and Baosen Zhang.
2022. Data-Driven Modeling of Aggregate Flexibility Under Uncertain and Non-
Convex Device Models. IEEE Transactions on Smart Grid 13, 6 (2022), 4572—-4582.
https://doi.org/10.1109/TSG.2022.3185532
Klaus Trangbaek and Jan Bendtsen. 2012. Exact constraint aggregation with
applications to smart grids and resource distribution. Proceedings of the IEEE
Conference on Decision and Control (2012), 4181-4186. https://doi.org/10.1109/
CDC.2012.6426475
C Villani. 2003. Topics in Optimal Transportation Theory. 58 (2 2003). https:
//doi.org/10.1090/gsm/058
Yilin Wen, Zechun Hu, Shi You, and Xiaoyu Duan. 2022. Aggregate Feasible
Region of DERs: Exact Formulation and Approximate Models. IEEE Transactions
on Smart Grid 13, 6 (2022), 4405-4423. https://doi.org/10.1109/TSG.2022.3179998
Mingyang Zhang, Yinliang Xu, Xiaoying Shi, and Qinglai Guo. 2024. A Fast
Polytope-Based Approach for Aggregating Large-Scale Electric Vehicles in the
Joint Market Under Uncertainty. IEEE Transactions on Smart Grid 15, 1 (2024),
701-713. https://doi.org/10.1109/TSG.2023.3274198
[21] Lin Zhao, He Hao, and Wei Zhang. 2016. Extracting flexibility of heterogeneous
deferrable loads via polytopic projection approximation. In 2016 IEEE 55th Con-
ference on Decision and Control (CDC). 6651-6656. https://doi.org/10.1109/CDC.
2016.7799293
[22] Yihong Zhou, Chaimaa Essayeh, and Thomas Morstyn. 2024. Aggregated Feasible
Active Power Region for Distributed Energy Resources with a Distributionally
Robust Joint Probabilistic Guarantee. IEEE Transactions on Power Systems (2024),
1-15. https://doi.org/10.1109/TPWRS.2024.3392622

[12

=
it

(15

[16

[17

[18

[19

[20

A Reformulation of Optimization

A.1 Projection onto empirical distribution

To avoid introducing any unnecessary assumptions about P, we
can center our ball on the projection (via the Wasserstein distance)
of P onto the set of M-point empirical distributions, and enlarge
the radius of our ambiguity set. Specifically, we use the empirical
distribution that minimizes the Wasserstein distance:

Py := argmin dy (Pa, P), (23)

Pape PM(E)

as the center of our ambiguity set. Moreover, taking the upper
bound of the triangle inequality,

dw (Pp, Qum) < dw (Py, P) + dw (P, Qum), (24)
we update the radius of our ambiguity set with
em(B) = dw (P, P) +em(P), (25)

to ensure the probabilistic guarantees of Theorem 4.2 still hold.
There exists a theoretical bound, dyy (Ppg, P) < CM_I/d, where d
is the dimension of the support of P and C is a constant that de-
pends on the distribution P. However, in practice, one can evaluate
dw (Pa, P) exactly, once Pys has been computed.
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Furthermore, P will most likely be made up of historical data and
as such will already be an empirical distribution, in which case we
simply use this and leave the radius of the ambiguity set unchanged.

A.2 Convexity of sub- and supermodular
functions

In their definitions ps and by take |C|, a set of discrete values, as
an argument, and so these functions are not affine. However we
can show that they are bounded by the following:

pe(A) = max; {0, e — Tjpm}
bg(ﬂ) < minj,k{Tjkm, e}
where the equality holds when t,t € Z, and we define:
Ti = (a;t+ QD) +b; + by (26)

and a J» a, b j Ek are constants are depend on A C 7. Taking the
upper bound on py(A) and the lower bound on bz (A) we can
write pg and by as the point-wise maximum and minimum of a
finite number of affine concave functions, respectively.

A.3 Reformulation of worst expectation of
submodular function

In Section 5 we showed how the robust aggregate flexibility sets
can be reformulated into finite convex optimization problems. Here
we provide the full details of the reformulation of the submodular
function, b?, defining A = Q(pP, bP). Viewing the submodular
function as the negative of a supermodular function we can use the
same form for the reformulated optimization problem as the super-
modular function. Therefore, we simply write the reformulation as
a maximization over its negative:

K
BB = — - b e~ 3k
= 3 a6 2

&ieEp k=1

1 M K
sit. MZZIIqikIISE’,

ap 20 Vi< M, Vk <K,

g-Jk c= v ew, vk <K.
Qik
From which we can explicitly calculate bP, can complete our

characterization of the robust aggregate flexibility sets.
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