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Abstract—With the wide deployment of smart meters in the
power grid, it is becoming much easier to gather the detailed
power consumption data of residential users, which enables the
possibility of smarter and greener power grid. However, the fine-
grained load profile of the individual user also introduces the
severe concern of privacy leakage as the private information such
as personal living habits may be inferred by the malicious third
parties for unauthorized use and benefits. Different from most
existing privacy-preserving energy management works which are
solely based on the control of rechargeable batteries, we further
introduce the proactive scheduling of widely used thermostatical-
ly controlled devices, including air conditioner, water heater, and
laundry drier for effective load hiding. To minimize the weighed
sum of financial cost, the deviation from the pre-defined load
profile, and the user dissatisfaction, we formulate a novel load
scheduling problem which is subject to both the device/battery
physical dynamics and the practical user requirements. In order
to solve the overall problem effectively under the uncertain price,
we decompose the primal problem into a series of subproblems
through dual composition, and design a stochastic gradient based
two-level iterative distributed algorithm. Extensive simulations
under various parameters are employed to demonstrate the
effectiveness of our design.

I. INTRODUCTION

With the recent advancement of information and communi-

cation technologies, the power grid is becoming more reliable,

secure, and efficient with ubiquitous sensing, communication

and control functionalities. Typically, the increasing number of

deployed smart meters are able to provide fine grained energy

consumption data of end users for various purposes, e.g., real-

time pricing, demand response, and etc [1]. However, serious

concerns have risen regarding to the possible privacy leakage

which may lead to unauthorized usage of personal information

or even malicious attacks [2]. For example, by non-intrusive

load monitoring (NILM) of voltage and current into the house

[3], it is possible to deduce the pattern of appliance usage and

the resident behavior, which can be exploited by the retailers

to promote sales or by the insurance companies to customize

the insurance types.

The encryption mechanism [4] is a typical way to protect

the smart meter data during the communication process, but

the utility company is still able to collect the overall personal

information which may be leaked to third parties. In order to

mitigate the possible exposure of end user privacy, various

passive data obfuscation methods have been proposed [5],

where the basic idea is to add noise into the original raw

data [6]. However, such perturbation of energy consumption

may cause inaccurate billing and reduce the performance of

power system controls [7].

At the other end of the research spectrum, some proactive

scheduling methods have been proposed to mask the load sig-

nature [2, 8, 9], which mainly rely on the charging/discharging

scheduling design of rechargeable batteries installed in each

house. However, the performance in terms of both financial

cost and guaranteed privacy is limited by the cost of additional

installed rechargeable batteries. Motivated by this observation,

this paper aims to minimize a weighted sum of financial

cost, privacy leakage performance, and the deviation from

the nominal user satisfactory by exploiting the scheduling

capability of widely used thermostatically controlled loads

(TCLs), including air conditioner, water heater, and laundry

drier. By utilizing the underlying thermal storage of these

TCLs, it is expected that the total load profile can be better

modulated while the desired user requirements can still be

satisfied [10].

The main contributions of this paper can be summarized

as follows. First, we introduce the thermostatically con-

trolled devices for load hiding, and formulate a unified load

privacy-preserving scheduling problem with both batteries and

shiftable loads under practical physical dynamics. Second, in

order to solve the problem under uncertain market price, we

propose a two-level distributed iterative algorithm to schedule

the load, such that the problem can be directly tackled in each

separate time slot. At last, we verify the performance of the

proposed design under various practical settings.

II. SYSTEM MODEL

In this section, we first introduce the detailed models

considered in this paper, which include the TCLs, the energy

storage devices and the market price. Then we present the

formulated privacy-preserving scheduling problem which aims

to track an arbitrary pre-specified energy consumption profile

for privacy protection while reducing the electricity bill and

providing certain user satisfaction.

A. Device Model

Let A denote the set of all devices to be scheduled. Since it

is still infeasible to feed back the power to the distribution grid

for residential users in some places like China, the following

constraint is required:∑
a∈A

xa(t) +D(t) ≥ 0 (1)
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where xa(t) denotes the power consumption of device a and

D(t) is the overall base load in time slot t, i.e., the load

that cannot be scheduled. For places adopting net metering

policies, i.e., residential users can sell power to the distribution

grid, this constraint can be simply removed.

1) Type 1: Thermostatically Controlled Load: Thermostati-

cally controlled loads are the appliances such as air condition-

er, water heater or laundry drier, which control the temperature

of certain environment. For each TCL a1 ∈ A1, let T in
a1
(t)

and T out
a1

(t) denote the temperatures at time slot t inside and

outside the space that the appliance is in charge of respectively

(T in
a1
(−1) denotes the temperature in the latest time slot of

last scheduling horizon). Then the following linear equation

describes the dynamics of each TCL

T in
a1

(t) =T in
a1

(t− 1) + αa1

[
T out
a1

(t)− T in
a1

(t− 1)
]
+ βa1xa1(t)

=(1− αa1)
t+1T in

a1
(−1) + αa1

t∑
i=0

(1− αa1)
t−iT out

a1
(i)

+ βa1

t∑
i=0

(1− αa1)
t−ixa1(i) (2)

where αa1 and βa1 are tunable parameters. The second term

in equation (2) models the heat transfer process, and the

third term models the efficiency of thermostatical controlled

devices. This equation holds for both heaters and coolers

(βa1 > 0 for heaters while βa1 < 0 for coolers).

Taking air conditioners for example, it is common that the

users may feel comfortable when the temperature is within

a specified range. We transform it into the following user

requirement constraint

T lower
a1

(t) ≤ T in
a1

(t) ≤ Tupper
a1

(t). (3)

Meanwhile, the power of a thermostatically controlled device

is limited as follows

0 ≤ xa1(t) ≤ xmax
a1

(t) (4)

where xmax
a1

(t) denotes the maximum device power at time

slot t.
2) Type 2: Rechargeable Batteries: In the modern house,

various rechargeable batteries are equipped into different ap-

pliances such as electric vehicle, tesla home battery, and etc.

Let Ba2(t) denote the state of charge (SOC) of an arbitrary

battery, the dynamic of a2 ∈ A2 can be characterized as

Ba2(t+ 1) = Ba2(t) + xa2(t)

= Ba2(0) +
t∑

i=0

xa2(i)
(5)

while satisfies the following constraints:

− xmax dis
a2

(t) ≤ xa2(t) ≤ xmax char
a2

(t)

−Ba2(t) ≤ xa2(t) ≤ Bmax
a2

−Ba2(t)
(6)

where Bmax
a2

denotes the battery capacity, xmax dis
a2

(t) and

xmax char
a2

(t) denote the maximal discharging rate and maxi-

mal charging rate at time slot t respectively. It is noteworthy

that some energy storage devices like tesla power wall can

provide energy to the household appliances while the others

may not due to the lack of AC-DC converter. In this paper, our

model and later solution can handle the general setting, but in

the evaluation part, we only consider the scenario where only

power wall can act as a power supplier while other charging

devices cannot for practical concern.

Furthermore, these devices such as EVs may have additional

requirement to satisfy the specific users’ requirement. Let αa2

and βa2 denote the starting time and deadline for the battery

charging, We use the following equation to model this usage

demand:

Rlower
a2

≤
βa2∑

t=αa2

xa2(t) ≤ Rupper
a2

(7)

where Rlow and Rup denote the lower bound and upper bound

of the usage requirement.

By carefully setting xmax char
a2

(t) = xmax dis
a2

(t) = 0 for

t < αa2 and t > βa2 , we can rewrite the constraint (7) as

below:

Rlower
a2

≤
N−1∑
t=0

xa2(t) ≤ Rupper
a2

. (8)

B. Market Model

In this paper, we consider a commonly used market model

with the coexistence of LSE (load-serving entity) and RTP

(real-time pricing) [11], where the consumer can either a)

reserve day-ahead electricity (then use it the next day), or

b) reserve day-ahead electricity (then use it the next day)

and purchase power from the real-time market if the reserved

capacity is insufficient. Specifically, the user can reserve

certain amount of electricity denoted as l(t) from the LSE

with a cost of C1(l(t), t), which means that the user can use

up to l(t) amount of electricity in time slot t the next day with

wholescale price. Let x(t) denote the amount of electricity

the user actually consumes. If x(t) is smaller than l(t), the

electricity consumption will cost C2(x(t), t) in addition to the

reservation fee. Otherwise, the user has to pay for the excess

consumption at price p(t) from the real-time market, where

the real-time price is larger than that from the LSE in general.

The total cost C(t) paid by the user at time slot t is

C(t) =

⎧⎪⎨
⎪⎩

C1(l(t), t) + C2(x(t), t) if x(t) ≤ l(t)

C1(l(t), t) + C2(l(t), t)

+ p(t) · (x(t)− l(t)) if x(t) > l(t).

(9)

The real-time price p(t) is released at the beginning of every

time slot and maintains constant during that time slot. Here

we assume the future price follows certain distribution which

can be estimated from historical data.

C. Pre-specified Load Profile

The objective of privacy-preserving scheduling is to drive

the final load profile to track a pre-specified curve so that

the private information cannot be inferred from the data. One

intuitive option is to make the load profile as flat as possible

[2], which, nevertheless, may enable the attacker to notice the

existence of protection method easily. Moreover, tracking such

flat curves may also be costly.
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In this paper, we propose a data driven profile generation

method. From the real energy consumption data, we can

cluster the users into several groups based on their electricity

usage patterns [12]. Then for privacy protection, the pre-

specified load profile of a user in one group can be randomly

selected from another group so that his electricity usage looks

totally different from the original. Specifically, we adopt the

correlation coefficient to depict the similarity of the load

profile patterns, and utilize the hierarchical cluster method

to cluster the energy consumption data. The clustering result

can provide recommendatory target profiles to the users. The

details of the clustering method and results are omitted in

this paper due to the limited space. Note that our following

scheduling design can be used for any pre-specified load

profile although the tracking error will be affected by both

the device capability and the shape of profile. It’s also quite

interesting to investigate the load profile optimization for

further reducing the costs and improving the performance of

power grid, which will be left as our future work.

D. Optimization Problem

Let f(t) and N denote the aggregated target load in time

slot t and the number of time slots, respectively. We formulate

the problem as a multi-objective optimization problem, where

the objective consists of three parts as shown below:

minE

{N−1∑
t=0

[
C(t) + γ(x(t)− f(t))2 +

∑
a∈A

γa(xa(t)− ya(t))
2

]}

s.t. (1), (3), (4), (6), (8)
(10)

where ya(t) is defined as the nominal power consumptions

of each device a for describing the user satisfaction [13]

(more changes or shifts of the user’s power usage leads to

a higher dissatisfaction), and γ and γa are set to characterize

the tradeoff among the electricity bill, the privacy preservation

and the user welfare. The expectation notation E is introduced

here out of the consideration of the uncertainty of p(t). Notice

that in the objective function, the first part describes the user’s

desire to minimize his financial cost while the second part

describes the performance of privacy protection in terms of

the profile tracking error, and the third term characterizes the

deviation from the user nominal requirement of all devices.

III. SOLUTION

In this section we present the detailed algorithm for solving

the original optimization problem (10). Due to the existence

of temporally-coupled constraints of device dynamics, it can

be observed that the primal problem (10) can’t be solved

over each time slot independently. Therefore, we first adapt

dual decomposition approach [14] to decompose the primal

problem into separable subproblems over the time horizon

such that each subproblem concerning the objective of each

time slot can be executed on different smart devices. Based on

the offline decomposed subproblems, we propose a two-level

iterative algorithm to solve the whole problem. In the outer

level, the Lagrangian multipliers are updated on a coordinator

node and sent to each smart device, while in the inner level,

each smart device with the assigned subproblem calculates

the scheduled loads of certain time slot by exploiting the

stochastic gradient and update them to the coordinator. The

detailed design is explained as follows.

A. Dual Decomposition
In this part, we explain how to decompose the original

problem into separable subproblems so that each subproblem

only needs to concern the objective over certain time slot and

thus can be assigned to calculate on different smart devices.
For notation simplicity, we first define new variables as

Ta1(t) = (1− αa1)
t+1T in

a1
(−1) + αa1

t∑
i=0

(1− αa1)
t−iT out

a1
(i)

φa1 = 1− αa1 . (11)

Then the Lagrangian is defined as

L(x, l,λ) =

E

{N−1∑
t=0

[
C(t) + γ(x(t)− f(t))2 +

∑
a∈A

γa(xa(t)− ya(t))
2

]}

+
∑

a1∈A1

N−1∑
t=0

λ1
a1
(t)(T lower

a1
(t)− Ta1(t)− βa1

t∑
i=0

φt−i
a1

xa1(i))

+
∑

a1∈A1

N−1∑
t=0

λ2
a1
(t)(Ta1(t) + βa1

t∑
i=0

φt−i
a1

xa1(i)− Tupper
a1

(t))

−
∑

a2∈A2

N−1∑
t=0

λ1
a2
(t)(Ba2(0) +

t∑
i=0

xa2(i)) (12)

+
∑

a2∈A2

N−1∑
t=0

λ2
a2
(t)(Ba2(0) +

t∑
i=0

xa2(i)−Bmax
a2

)

+
∑

a2∈A2

[
λ4
a2
(

N−1∑
t=0

xa2(t)−Rupper
a2

)− λ3
a2
(

N−1∑
t=0

xa2(t)−Rlower
a2

)

]

−
N−1∑
t=0

λ(t)(
∑
a∈A

xa(t) +D(t))

where λj
ai
(t) denotes jth Lagrangian multiplier for device ai

corresponding to the physical constraint at time slot t.
In the original problem, note that some constraints are orig-

inally separable over the time horizon while other constraints

such as
∑

a2∈A2

∑N−1
t=0 λ2

a2
(t)(B(0) +

∑t
i=0 xa2(i)) are not

due to the existence of device dynamics. In the following, we

show how to transform the constraints in order to decompose

the original problem. Due to the limited space, we only show

the transforming process of the fourth row of the Lagrangian

which corresponds to the lower bound constraint of battery.

−
∑

a2∈A2

N−1∑
t=0

λ3
a2
(t)(Ba2(0) +

t∑
i=0

xa2(i))

=−
∑

a2∈A2

N−1∑
t=0

λ3
a2
(t)Ba2(0)−

∑
a2∈A2

N−1∑
t=0

(
λ3
a2
(t)

t∑
i=0

xa2(i)

)

=−
∑

a2∈A2

N−1∑
t=0

λ3
a2
(t)Ba2(0)−

∑
a2∈A2

N−1∑
t=0

(
xa2(t)

N−1∑
i=t

λ3
a2
(i)

)
.
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Thus the Lagrangian function (12) can be separated to several

subproblems that can be solved at each time slot respectively.

The subproblem can be represented as:

S(x(t), l(t), t) = E

[
C(t) + γ(x(t)− f(t))2 + γa(x(t)− f(t))2

]

−
∑

a1∈A1

(
βa1xa1(t)

N−1∑
i=t

φi−t
a1

λ1
a1
(i)

)

+
∑

a1∈A1

(
βa1xa1(t)

N−1∑
i=t

φi−t
a1

λ2
a1
(i)

)
(13)

−
∑

a2∈A2

(
xa2(t)

N−1∑
i=t

λ1
a2
(i)

)
+

∑
a2∈A2

(
xa2(t)

N−1∑
i=t

λ2
a2
(i)

)

−
∑

a2∈A2

λ3
a2
xa2(t) +

∑
a2∈A2

λ4
a2
xa2(t)

− λ(t)(
∑
a∈A

xa(t) +D(t))

where x(t) denotes a vector whose components containing

all the xa(t) to be scheduled. It can be seen that the terms

like
∑

a2∈A2

∑N−1
t=0 λ3

a2
(t)Ba2(0) are removed since they are

independent from x and l for fixed Lagrangian multipliers.

B. Two-Level Iterative Algorithm Design
Based on the offline decomposition results, we are ready

to present the two-level iterative algorithm. Given day-ahead

reserve capacity l(t) and a sample of the real-time price

p(t), the decision of x(t) in each subproblem becomes a

deterministic optimization problem, which can be solved by

commercial solver directly. After obtaining the optimal real-

time load, we have S̃(l(t), t) = S(x∗(t), l, t). Due to the

existence of uncertain p(t), we adopt the method of stochastic

gradient [13] to solve the subproblem iteratively by exploiting

the distribution of p(t). Note that p(t) is independent on l(t),
then the following equation holds according to the theory of

stochastic gradient,

∂E[S̃(l(t), t)]

∂l(t)
= E[

∂S̃(l(t), t)

∂l(t)
] (14)

which means that the gradient of the expected objective can

be estimated by ∂S̃(l(t), t)/∂l(t). In summary, we obtain

Algorithm 1, which can solve the subproblems distributedly

among the smart devices while satisfying all the physical

constraints. Here we index l(t) and p(t) by inner level iteration

number m while λ by outer level iteration number k, and

introduce a new operator max(a, b) to find the larger value

between a and b.
The Algorithm 1 has two levels of iterations. The outer

level updates Lagrangian multipliers to satisfy all the physical

constraints, while the inner level solves subproblems given

corresponding Lagrangian multipliers. A coordinator allocates

the subproblems to each smart device and updates λ based on

the feedbacks of subproblem solutions. The algorithm returns

the optimal load scheduling when the Lagrangian multipliers

converge to their optimal values, which is guaranteed by the

convexity of the primal problem. The proof of the convergence

and optimality is dismissed due to space limitation.

Algorithm 1 Two-level iterative method

Input: the user preferences and environmental parameters
Output: x∗,l∗,λ∗

1: Initialization: the user selects a random value for each La-
grangian multiplier;

2: repeat
3: Inner Level: the coordinator node allocates the subproblems

to different smart devices with a random day-ahead load l0.
For each subproblem,

4: repeat
5: With lm(t) and sampled pm(t), obtain the corresponding

optimal real-time load x∗m(t);
Update the day-ahead load lm+1 using stochastic gradient:

lm+1(t) = max

[
lm(t) + ε · ∂S̃(l

m(t), t)

∂lm(t)
, 0

]

where ε < 0 denotes the step size;
6: until The variation between lm+1(t) and lm(t) is smaller than

a threshold.
7: Outer Level: Update the Lagrangian multipliers based on the

result from inner loop according to:

λk+1 = max

[
λk + ε · ∂L(x

∗, l∗,λk)

∂λk
, 0

]

where ε > 0 denotes the step size;
8: until The variation between λk+1 and λk is smaller than a

threshold.
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Fig. 1: Real-time price

IV. EVALUATION

To illustrate the effectiveness of our design, we consider

a family with three major shiftable appliances: an air con-

ditioner, a Tesla Model S and a Tesla Powerwall. The daily

scheduling horizon is divided into 24 time slots. For the air

conditioner, the thermal parameters are set as α = 0.9 and

β = −10, and the region of tolerable temperature is set as

[70F,79F] [15]. The extraventricular temperature is derived

from the climate data of Hangzhou, China in July. For electric

vehicle and home battery, the parameters are chosen directly

from the official data of Tesla. Besides, the electric vehicle

has a minimum charging amount 60kWh from the initial SOC

of 10kWh to meet the basic usage demand. The real-time

price information is derived from [11] as Figure 1 shows, and

we assume the real-time price follows gauss distribution with

standard deviation 0.002. For space limitation, only the flatten

load profile is verified in this paper although our algorithm

can also applied to any arbitrary pre-specified load profile.

We first demonstrate the convergence of proposed two-level

iterative algorithm, which is shown in Figure 2 and Figure

3. In Figure 2, it can be observed that the corresponding

Lagrangian multipliers converge to their optimal values as

the increase of iteration times. Note that some Lagrangian

multipliers remain zero as the corresponding constraints keep
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valid, and thus are not depicted in this figure. In Figure 3,

we show the convergence of inner level part for the first

time slot, i.e., the day-ahead load calculation under price

uncertainty. It can be seen that both the day-ahead load and

the corresponding objective for the first time slot converges

simultaneously with the iteration. It is interesting to notice that

there exist some fluctuation around the optimal value caused

by the price uncertainty. Such fluctuation may be reduced by

setting a smaller step size at the cost of convergence speed.

In Figure 4, we evaluate the influence of the weight of

privacy leakage γ in the objective function. It can be observed

that the real load profile becomes closer to the pre-specified

profile with the increase of γ. Specifically, we also depict the

base load of the residential user (the blue line) to show the ef-

fectiveness of privacy protection in Figure 4. Correspondingly,

Figure 5 shows the complete time-varying load schedule for

each device under γ = 1.

For default γ = 1, we further investigate the privacy

protection performance by comparing our design with the

one only considering rechargeable batteries. Specifically, we

calculate the corresponding total bills and the profile vari-

ance for two approaches. With even smaller financial cost

(our approach 3.017$ v.s. battery-based approach 3.055$), the

proposed design achieve 19% less variance (1.071 v.s. 1.337)

compared with the battery-based approach, which demon-

strates the effectiveness of our design.

V. CONCLUSIONS

In this paper, we investigate the feasibility of utilizing load

scheduling to protect the residential user’s behavior privacy.

Unlike most of the existing works which only home battery to

flatten the power usage profile, we adopt two kinds of flexible

load to make the consumption profile tracking a pre-designed

curve. We formulate the scheduling process as an optimization

problem, and propose a two-level iterative algorithm to solve

the problem efficiently. To cope with the price uncertainty,

stochastic gradient method is utilized to calculate the optimal

day-ahead load under expectation meaning. Simulation result

reveals the convergence and optimality of the proposed algo-

rithm and shows that our method can protect the residential

user’s behavior privacy efficiently. It is worth noting that our

algorithm can be extended to design an online algorithm by

adopting the receding horizon optimization method, which will

be considered as our future work.
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