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Abstract

This paper investigates the efficiency loss in social
cost caused by strategic bidding behavior of individual
participants in a supply-demand balancing market, and
proposes a mechanism to fully recover equilibrium
social optimum via subsidization and taxation. We
characterize the competition among supply-side firms
to meet given inelastic demand, with linear supply
function bidding and the proposed efficiency recovery
mechanism. We show that the Nash equilibrium of
such a game exists under mild conditions, and more
importantly, it achieves the underlying efficient supply
dispatch and the market clearing price that reflects the
truthful system marginal production cost. Further, the
mechanism can be tuned to guarantee self-sufficiency,
i.e., taxes collected counterbalance subsidies needed.
Extensive numerical case studies are run to validate
the equilibrium analysis, and we employ individual net
profit and a modified version of Lerner index as two
metrics to evaluate the impact of the mechanism on
market outcomes by varying its tuning parameter and
firm heterogeneity.

1. Introduction

Deregulated markets are designed to foster
competition among participants by allowing them
to bid freely, in the aim of driving efficient operation
and investment. However, natural barriers to market
entry and strategic dominance of existing participants
often lead to oligopolistic markets that are not socially
efficient in principle, e.g., electricity markets. There
exists systematic loss of efficiency attributed to the
strategic behavior of individual participants, which
exploits the anticipation of their bidding impact to
manipulate market clearing prices. Such ability to earn
themselves extra benefits is referred to as market power
in economics.

The study of the efficiency loss due to the exercise
of market power has been prevailing for decades,

especially from a game theoretic perspective. It is
claimed in [1] that in a network resource allocation
market with a proportional pricing mechanism, the
aggregate surplus at the Nash equilibrium is no
worse than a factor of 4

√
2 − 5 times the optimal

aggregate surplus, thus bounding the efficiency loss
by approximately 34%. [2] looks at a market with
parameterized supply function bidding and uniform
pricing, and provides a similar upper bound on
efficiency loss at a symmetric equilibrium. To ease
analysis, [3] considers a simpler form of linear supply
function bids and is able to characterize the general
Nash equilibrium in such a game. Further, the
maximal efficiency loss can also be bounded under mild
conditions.

There have been extensive efforts towards alleviating
such loss of efficiency, from both academia and industry.
[4] builds a quantity-bid based market/platform where
the unique Nash equilibrium achieves social optimum.
The billing mechanism is designed to align individual
payoff with global utility. A similar idea is adopted
in [5] that employs the Vickrey–Clarke–Groves (VCG)
mechanism to bill participants. The rationale of the
VCG mechanism is to make each participant responsible
for the increment of the total system cost due to its
participation, which also guarantees social optimum
at the Nash equilibrium. However, this class of
mechanisms require sharing certain private information.
[6] develops an interaction mechanism for aggregators
to solicit regulation service from electric vehicles, which
guarantees to achieve the global efficiency of a carefully
designed problem at the Nash equilibrium. However,
the game setup and the structure of strategy space are
highly specific and difficult to generalize. Additionally,
the industry, electricity markets in particular, has also
implemented policies to mitigate the impact of market
power, such as market power test combined with price
substitution [7], and posterior penalty or adjustment in
the UK electricity market [1] and Nord Pool [8]. Most
of them are empirically designed and may need further
theoretical support.
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Our work contributes to this line of research by
proposing a market mechanism that fully recovers
social optimum at the Nash equilibrium among firms
(suppliers) bidding to meet inelastic demand. The
mechanism uses only the market quantities, e.g.,
bids, dispatch and prices, to compute and impose an
additional monetary term, in the form of subsidy or
tax, on each individual firm. Such a mechanism,
when co-executed with market clearing rules, drives
the Nash equilibrium to be efficient that achieves the
minimum social cost. Furthermore, the market can
control a tuning parameter of the mechanism to maintain
self-sufficiency, i.e., taxes collected counterbalance
subsidies needed, thus redistributing surplus among
firms. We use individual net profit and a modified
version of Lerner index as metrics in case studies
to evaluate the impact of the mechanism on market
outcomes, in terms of varying tuning parameters and
firm heterogeneity.

The main contributions are three-fold:
1. We design an efficiency recovery mechanism,
parameterized by a tuning constant, that provably drives
the Nash equilibrium of a linear supply function bidding
game among firms to be socially optimal. Indeed, the
rationale underneath this mechanism design can be used
in other market setups beyond linear supply function
bidding.
2. We show that the tuning parameter can be set
such that the market is self-sufficient in the presence
of the efficiency recovery mechanism, and uncover the
intrinsic tradeoff in selecting this parameter between
market self-sufficiency and individual profitability.
3. We specifically develop two evaluation metrics of
individual net profit and modified Lerner index for
the mechanism and extensively study its impact on
market outcomes with varying tuning parameters and
firm heterogeneity.

The remainder of this paper is organized as follows.
Section 2 introduces the preliminaries of the market
setup and equilibria characterization. Section 3 proposes
the efficiency recovery mechanism, while Section 4
discusses its implementation and evaluation. Section 5
presents case studies that validate our analysis and
illustrate the impact of the mechanism. In the end,
Section 6 concludes.

2. Preliminaries

2.1. System Model

We consider a supply-demand balancing market
where a set N := {1, 2, . . . , |N |} of firms bid linear
supply functions to meet given inelastic demand d > 0.

A linear supply function takes the form of

qi = bip (1)

for each firm i ∈ N , where qi denotes its supply and p is
the market clearing price. The linear coefficient bi ≥ 0
therefore indicates the amount of supply incentivized by
per unit price and is freely chosen by each individual
firm. The larger bi is, the more a firm is willing to
supply at price p – a natural interpretation as firms’
price sensitivity. Without ambiguity, we may refer to
bi as supply function bids from firms. Suppose that
firm i incurs a production cost Ci(qi) for its supply qi.
We adopt general assumptions on the cost function that
Ci(·) : R → R is continuously differentiable, convex,
and strictly increasing with Ci(0) = 0.

After collecting the supply function bids B :=
(bi, i ∈ N ) from all firms, the market matches the total
supply with the demand d∑

i

qi = d (2)

by setting a clearing price at

p(B) =
d∑
i bi

(3)

To avoid degenerate situations where all firms make bids
of 0 and supply-demand balance cannot be met, we
make the following assumption:
Assumption 1 If all firms bid bi = 0, ∀i ∈ N , these
bids will be rejected by the market.
For notational convenience, we further define B−i :=
(bj , j ∈ N\{i}) and

∑
−i bj :=

∑
j∈N\{i} bj .

2.2. Competitive Equilibrium

Consider a perfectly competitive market where all
firms are rational price takers, i.e., they take market
clearing prices as given and respond by making optimal
bids to maximize their profit. In particular, given price
p, each firm i solves the following individual bidding
problem for profit maximization:

max
bi≥0

πi(bi; p) := pqi − Ci(qi) (4)

= p2bi − Ci(pbi)

where πi denotes the profit of firm i.
In such a market, a competitive equilibrium is

defined as follows.
Definition 2.1 A competitive equilibrium among
price-taking firms is a tuple (B, p) that satisfies



1. bi is optimal w.r.t. (4), given p, for ∀i ∈ N ;

2. supply matches demand, i.e., (2).

It is shown in [3] that through the analysis of the
optimality KKT conditions of (4), such a competitive
equilibrium exists and can be characterized by
Proposition 2.2 The competitive equilibrium (B, p)
among price-taking firms exists. Moreover, it is efficient
in the sense that it minimizes the social cost, defined as

min
qi≥0,i∈N

∑
i

Ci(qi) (5a)

s.t.
∑
i

qi = d (5b)

with qi = bip, i ∈ N .
If all the cost functions Ci(·) are strictly convex, there
will exist a unique competitive equilibrium.

2.3. Nash Equilibrium

We further consider an oligopolistic market where all
firms are aware of the market clearing rule (3) and bid
strategically. In particular, each firm i will anticipate
the impact of its bidding decision on the clearing price
and integrate such anticipation into the optimal bidding
problem:

max
bi≥0

π(bi;B−i) = pqi − Ci(qi) (6a)

= p2bi − Ci(pbi)
s.t. (3) (6b)

A Nash equilibrium in such a market is where no
firm has an incentive to deviate from the current status
unilaterally, formally defined by
Definition 2.3 A Nash equilibrium among strategic
firms is a tuple (B, p) that satisfies

1. bi is optimal w.r.t. (6), given B−i, for ∀i ∈ N ;

2. supply matches demand, i.e., (2).

[3] has also characterized the existence and structure
of such a Nash equilibrium, summarized below.

Proposition 2.4 If |N | ≥ 3 holds, the Nash equilibrium
among strategic firms exists and is unique. Moreover, it
solves the following convex optimization problem:

min
0≤qi≤ d

2 ,i∈N

∑
i

Di(qi) (7a)

s.t.
∑
i

qi = d (7b)

with

Di(qi) :=
d− qi
d− 2qi

Ci(qi)−
∫ qi

0

d

(d− 2x)2
Ci(x)dx . (8)

(7) differs from (5) mainly in the objective function
where the constructed cost functions Di(·) are strictly
convex in [0, d2 ), thus guaranteeing the uniqueness of the
Nash equilibrium.

3. Efficient Nash Equilibrium

In this supply function bidding market, as we
compare (7) with (5), in general the Nash equilibrium
likely deviates from the efficiency in terms of the social
cost, achieved by the competitive equilibrium. Such
loss of efficiency from a social perspective is common
in market competition due to the strategic behavior
of participants. However, it degrades the role of a
free market in fostering efficient trading and prevents
the economy from prospering in the long run. We
propose in this section a novel mechanism, co-executed
with the supply function bidding mechanism, to recover
efficiency of oligopolistic market operation, i.e., its
Nash equilibrium, via extra revenue or expenditure
imposed on each individual firm in the form of subsidy
or tax.

3.1. Efficiency Recovery Mechanism

The efficiency recovery mechanism enforces an
extra term ∆πi of revenue, or expenditure if it is
negative, on each firm i such that its current objective
function is explicitly

π†i := π + ∆πi

= pqi − Ci(qi) + ∆πi ,
(9)

where the market clearing rule remains the same for the
original transaction part. We design ∆πi in a way that
interlaces with the supply function bidding and therefore
affects the market competition.

In particular, we will exploit the existing market
quantities to define the extra term as

∆πi =
q2
i

2
∑
−i bj

− φ d2

2
∑
−i bj

, (10)

where φ is a constant to be set by the market.
Remarkably, the first term is associated with individual
bids through their respective supply qi, while the second
term is independent of each firm i’s bidding decision
bi. In principle, the first term serves as the incentive



to encourage supply when the willingness of other firms
to supply is low, i.e., their aggregate bids

∑
−i bj are

small. The second term is controlled by the market to
achieve re-balance of surplus among firms via subsidy,
∆πi > 0, or tax, ∆πi < 0. Moreover, we specify the
following assumption to avoid degenerate situations:

Assumption 2 In the case of
∑
−i bj = 0 for any firm

i, ∆πi is set to a sufficiently large constant.

In the presence of the efficiency recovery
mechanism, the optimal bidding problem of each
strategic firm i turns out

max
bi≥0

π†(bi;B−i) (11a)

= pqi − Ci(qi) + ∆πi

= p2bi − Ci(pbi) +
q2
i

2
∑
−i bj

− φ d2

2
∑
−i bj

s.t. (3) (11b)

Our main result points to the characterization of a
Nash equilibrium among strategic firms in such a case,
as defined below.

Definition 3.1 A Nash equilibrium among strategic
firms in the presence of the efficiency recovery
mechanism is a tuple (B, p) that satisfies

1. bi is optimal w.r.t. (11), given B−i, for ∀i ∈ N ;

2. supply matches demand, i.e., (2).

More precisely, we show the existence of such a Nash
equilibrium and that it is indeed efficient in terms of the
social cost, as summarized below.

Theorem 3.2 If there are at least two firms with q∗i >
0 at the social optimum of (5), the Nash equilibrium
among strategic firms in the presence of the efficiency
recovery mechanism exists. Moreover, it is efficient that
minimizes the social cost, i.e., it is an optimal solution
to (5).

Proof: We first characterize the strategic bidding
behavior of each individual firm i out of the bidding
problem (11). By substituting (3) into π†, we obtain its
explicit expression

π† =
d2bi

(
∑
j bj)

2
− Ci

(
dbi∑
j bj

)
+

d2b2i
2(
∑
j bj)

2
∑
−i bj

− φ d2

2
∑
−i bj

.

(12)

In the case of
∑
−i bj = 0, the profit of firm i boils

down to

π† =
d2

bi
− Ci(d) + constant , (13)

which suggests that firm i has an incentive to bid a
positive bi yet as small as possible, in order to gain
infinite profit. Note that the market will reject the bids if
firm i makes zero bid. Therefore, no equilibrium exists
in this case.

In the case of
∑
−i bj > 0, its first-order derivative

can be computed as

dπ†i
dbi

=
d2(
∑
−i bj − bi)

(
∑

j bj)
3

−
d
∑
−i bj

(
∑

j bj)
2
C
′
i

(
dbi∑
j bj

)

+
d2bi

(
∑

j bj)
3

=
d2

(
∑

j bj)
2

(∑
−i bj∑
j bj

−
∑
−i bj

d
C
′
i

(
dbi∑
j bj

))
.

(14)
Inside the parenthesis, the first term, bounded by (0, 1],
is decreasing in bi, while the second term, bounded by[∑

−i bj
d C

′

i (0) ,
∑
−i bj
d C

′

i (d)
)

, is non-decreasing in bi.

Note that the outer term is always positive.

(a) If
∑
−i bj
d C

′

i (0) ≥ 1 holds, we have dπ†i
dbi
≤ 0 for

∀bi ≥ 0 and dπ†i
dbi

< 0 for ∀bi > 0. Therefore,
bi = 0 maximizes the profit of firm i and is the
optimal bid.

(b) If
∑
−i bj
d C

′

i (0) < 1 holds, there exists a unique
bid 0 < b∗i <∞ that satisfies∑

−i bj∑
j bj

=

∑
−i bj

d
C
′

i

(
dbi∑
j bj

)
(15)

and thus dπ†i
dbi

= 0. For 0 ≤ bi < b∗i , dπ†i
dbi

> 0

holds, while for b∗i < bi < ∞, dπ†i
dbi

< 0 holds.
Therefore, b∗i maximizes the profit of firm i and is
the optimal bid.

Note that the above two optimality conditions can be
equivalently summarized as: for ∀bi ≥ 0,(

d∑
−i bj + b∗i

− C
′

i

(
db∗i∑

−i bj + b∗i

))
(bi−b∗i ) ≤ 0 ,

(16)



given
∑
−i bj . If b∗i > 0 holds, (16) enforces (15),

i.e., the situation (b). If b∗i = 0 holds, (16) enforces∑
−i bj
d C

′

i (0) ≥ 1, i.e., the situation (a).

By Definition 3.1, the equilibrium conditions boil
down to(

p− C
′
i (b
∗
i p)
)
(bi − b∗i ) ≤ 0, ∀bi ≥ 0, ∀i ∈ N , (17a)∑

i b
∗
i p = d , (17b)

with p > 0. Substituting the supply function form q =

bip and multiplying (17a) with p, we equivalently arrive
at (

p− C
′
i (q
∗
i )
)
(qi − q∗i ) ≤ 0, ∀qi ≥ 0, ∀i ∈ N , (18a)∑

i q
∗
i = d , (18b)

which is exactly the KKT optimality conditions for the
social cost minimization problem (5). Note that the
prerequisite

∑
−i bj > 0 for ∀i ∈ N necessitates that

there should be at least two firms with q∗i > 0 at the
optimum of (5). Under such a circumstance, the Nash
equilibrium solves (5), always exists, and is efficient. �

In Theorem 3.2, the condition that requires at least
two active firms with q∗i > 0 at the social optimum
suggests that in the presence of only one dominant
firm in the market, it is difficult to restrict its strategic
behavior which may arbitrarily manipulate the clearing
price.

3.2. Subsidy or Tax?

Notably, this efficiency recovery mechanism in fact
represents a family of functions ∆πi, parameterized by
the constant φ. The market can control φ to reallocate
surplus among firms via subsidy, ∆πi > 0, or tax,
∆πi < 0. Given a φ, whether a firm enjoys subsidy
or incurs tax at the Nash equilibrium can be explicitly
deduced as
Corollary 3.3 At the Nash equilibrium, for each

strategic firm i, ∆πi is a subsidy, if φ <
(
q∗i
d

)2

holds,

while a tax if φ >
(
q∗i
d

)2

holds, where (q∗i , i ∈ N ) is an

optimal solution to (5).
The corollary is an immediate result of Theorem 3.2 and
the definition of ∆πi in (10). Moreover, it indicates the
following:

(a) In the case of φ ≤ 0 ≤
(

infi q
∗
i

d

)2

, no firm will

incur tax at the Nash equilibrium;

(b) In the case of φ ≥ 1 ≥
(

supi q
∗
i

d

)2

, no firm will

enjoy subsidy at the Nash equilibrium.

Therefore, a reasonable region for φ should be [0, 1):
φ = 0 provides the minimum aggregate subsidy with
every firm subsidized; φ = 1 instead overtaxes all firms
that renders them unprofitable. Indeed, there exists a
φ ∈ (0, 1) to make the market self-sufficient, i.e., taxes
collected counterbalance subsidies needed.
Corollary 3.4 By setting

φ =

∑
i
q∗i

2

d−q∗i
d2
∑
i

1
d−q∗i

, (19)

the market achieves self-sufficiency at the Nash
equilibrium with ∑

i

∆πi = 0 . (20)

However, this particular φ in (19) depends on the
underlying social optimum (q∗i , i ∈ N ) of (5), which
is unknown a priori since the private individual cost
functions are not available. The setting of φ in real time,
if it is allowed time-varying, can be potentially realized
through online learning, and we would like to leave it as
an open problem.

4. Implementation and Evaluation

In this section, we briefly discuss methods to reach
the Nash equilibrium and evaluation metrics for the
proposed efficiency recovery mechanism.

4.1. Best Response Bidding Algorithm

We employ a sequential best response bidding
algorithm to reach the Nash equilibrium in the presence
of the efficiency recovery mechanism [9]. In principle,
each strategic firm take turns to update its bid by solving
its individual bidding problem (11) based on the current
bids from other firms, and the process iterates until
no firm makes changes to its bid. The detailed steps
include:
Step 1: All firms initialize random positive bids
(bi(0), i ∈ N ), and the clearing price p is set according
to (3).
Step 2: At kth iteration with k = 1, 2, . . . , based on the
current bids B−i(k − 1) of other firms, firm i, with

i =

{
|N | , if k mod |N | = 0 ,

k mod |N | , otherwise ,
(21)



chooses its optimal bid

bi(k) = arg max
bi:(3)

π†i (bi;B−i(k − 1)) . (22)

Step 3: The bids of other firms carry over to this
iteration:

bj(k) = bj(k − 1) , j 6= i . (23)

With all these bidsB(k), the market updates the clearing
price at

p(k) =
d∑
i bi(k)

. (24)

Step 4: Increase k by 1 and go back to Step 2 unless
k mod |N | = 0 holds. Check whether all the bids B
remain unchanged in the last |N | iterations. If so, the
algorithm has converged; otherwise, increase k by 1 and
go back to Step 2.

The best response bidding algorithm in general
guarantees convergence to a Nash equilibrium of a
well-defined game, as also validated empirically by
our extensive numerical tests for the supply function
bidding game in the presence of the efficiency recovery
mechanism. A rigorous proof for the convergence of
such an algorithm in our setup is an ongoing topic.

4.2. Evaluation Metrics

The impact of the strategic behavior of individual
participants on market outcomes is associated with their
intrinsic market power and usually reflected through
their ability to manipulate clearing prices [10]. From
above, strategic bidding does deteriorate global market
efficiency, which can be fully recovered with the
proposed mechanism. However, the imposed subsidy or
tax alters the surplus allocation among firms, thus still
maintaining local impacts on individuals. To capture
such impacts, we propose two evaluation metrics.

The first is the net profit of each firm, i.e., the
objective function π† in (11). This metric is particularly
meaningful when the market is self-sufficient such that
it is directly comparable with the surplus allocation at
the competitive equilibrium, given the same aggregate
net profit. The re-allocation points to who benefits from
the mechanism to recover efficiency.

The second is a modified version of the Lerner
index [11], which dates back to 1934 and is a widely
recognized measure of market power for individual
firms. The standard Lerner Index is defined to capture
the difference between the clearing price and a firm’s
marginal cost:

Lstd
i = 1− C

′

i(qi)

p
. (25)

The larger this index is, the more market power a firm
possesses. We adopt a similar idea but make minor
changes to adapt to our setting, due to the presence
of subsidy or tax. In particular, we integrate the extra
subsidy or tax into the cost of each individual firm and
compute its marginal cost accordingly. On this basis, we
propose our modified Lerner index as

Li = 1−
C
′

i(qi)− d∆π†

dqi

p
. (26)

It in general has the same indication function as its
standard version.

Corollary 4.1 In the presence of the efficiency recovery
mechanism, the modified Lerner index of each strategic
firm i at the Nash equilibrium is explicitly given by

Li =
q∗i

d− q∗i
, i ∈ N , (27)

where (q∗i , i ∈ N ) is an optimal solution to (5).

The corollary exploits Theorem 3.2 and provides
an insight into the underlying relation between the
equilibrium Lerner index and the efficient dispatch of
supply. Indeed, the more cost effective a firm is
in production, the higher its index (27) is, indicating
that the efficiency recovery mechanism does favor such
firms.

5. Case Studies

In this section, we validate our equilibrium analysis
and evaluate the proposed mechanism with the two
metrics, individual net profit and the modified Lerner
index, in terms of varying φ and heterogeneity of
firms. The notion of heterogeneity is captured by the
diverse cost functions of firms. We adopt quadratic
cost functions, parameterized by quadratic and linear
coefficients only. We will mainly use a 3-firm case as
an illustrative example. The standard cost functions of
the three firms are shown in Table 1, but we may vary
some of them later to study the impact of heterogeneity.
The default value for φ is set to that in (19). The inelastic
demand is fixed at d = 10, 000 MW.

5.1. Equilibrium Validation

We run the best response bidding algorithm on
the standard 3-firm case to iteratively achieve an
equilibrium in the presence of the efficiency recovery
mechanism. The convergence of the algorithm is
demonstrated in Figure 1, Figure 2, and Figure 3,



Table 1. Quadratic cost functions of firms

Firm
quadratic coefficient

($/MW2)
linear coefficient

($/MW)

1 0.001 10
2 0.005 10
3 0.005 10

showing respectively the evolution of the market
clearing price, individual bids, and individual supply
dispatch.

Figure 1. Convergence of market clearing price

under best response bidding algorithm

In Table 2, we list the three equilibria with the same
firms’ specifications, where the Nash equilibrium and
the competitive equilibrium are directly obtained by
solving (7) and (5), respectively. It can be observed
that the equilibrium we arrive at using the best response
bidding algorithm is consistent with the competitive
equilibrium, which is indeed efficient and conforms with
Theorem 3.2. Compared with the Nash equilibrium, the
most cost effective firm 1 does not withhold its bid to
exaggerate its cost and thus the clearing price is driven
back to reflect the system marginal cost in the presence
of the efficiency recovery mechanism.

Table 3 shows the modified Lerner index for each
firm at the efficient Nash equilibrium. As Corollary 4.1
indicates, the index reflects the truthful cost efficiency of
firms, with firm 1 dominating the other two firms, which
is consistent with their cost specifications in Table 1.
Figure 4 depicts the individual net profit breakdown
of each firm. We can observe that firms 2 and 3 are
taxed to subsidize firm 1, so as to drive all of them
to bid truthfully. However, this self-sufficient case
suggests that the internal effort to recover efficiency may
hurt individual profitability, which discourages market
participation in the long run. To avoid such situations,

Figure 2. Convergence of individual bids under best

response bidding algorithm

Figure 3. Convergence of individual supply dispatch

under best response bidding algorithm

the market may have to conservatively set a small φ,
i.e., using external subsidy. This is an intrinsic tradeoff
between self-sufficiency and individual profitability for
this efficiency recovery mechanism.

5.2. Impact of φ

In this subsection, we assess the impact of the
constant φ, controlled by the market, in the efficiency
recovery mechanism on market surplus allocation
among firms. Note that Corollary 4.1 suggests that the
modified Lerner index is independent of φ. Therefore,
we will mainly use individual net profit as the metric.

In particular, we vary φ from 0 to 1 and display
the explicit breakdown of the three firms’ net profit in
Figures 5 and 6, including revenue from the market,
individual production cost, and subsidy or tax. Note
that the net profit of a firm equals its revenue minus
cost plus subsidy (or minus tax). Obviously φ controls



Table 2. Comparison among Nash equilibrium (NE),

competitive equilibrium (CE), efficient Nash

equilibrium (ENE)

NE CE ENE

Social cost ($) 152627.6 135714.3 135714.3
Price ($/MW) 43.3 17.1 17.1

Bid 1 (MW2/$) 93.1 416.7 416.7
Bid 2 (MW2/$) 68.8 83.3 83.3
Bid 3 (MW2/$) 68.8 83.3 83.3

Table 3. Modified Lerner index at ENE

Firm 1 Firm 2 Firm 3

Index 2.5 0.17 0.17

subsidy/tax - in general a firm incurs tax with φ
approaching 1 and enjoys subsidy with φ = 0. However,
due to the dominance of firm 1 from its cost efficiency,
it only requires approximately φ ≤ 0.7 to enjoy subsidy.
In the meantime, the other two firms are much more
likely to incur tax, even with only φ ≥ 0.2. Their
different transitioning φ’s between subsidy and tax are
not necessarily consistent with the self-sufficient φ in
(19). Therefore, it remains an open problem to set φ
properly to balance conflicting objectives.

5.3. Impact of Firm Heterogeneity

In this subsection, we assess the impact of
heterogeneity among firms on equilibrium market
outcomes in the presence of the efficiency recovery
mechanism. In order to capture various degrees of

Figure 4. Net profit break down at ENE

Figure 5. Net profit breakdown of firm 1 with

varying φ

Figure 6. Net profit breakdown of firm 2 & firm 3

with varying φ

heterogeneity, we vary the quadratic coefficient of firm
1 from 0.005 to 0.0005, and define this coefficient
ratio between firm 2/3 and firm 1 as an index for
heterogeneity. Therefore, this index of 1 implies a
homogeneous case: the more it deviates from 1, the
more heterogeneous the case becomes. Note that as
we change the cost specifications, the self-sufficient φ
also varies to guarantee overall subsidy-tax balance, as
shown in Figure 7.

We first show in Figure 8 the variation of the
modified Lerner index with respect to the heterogeneity
index. Starting from the homogeneity case, the Lerner
index diverges between firm 1 and firm 2/3. As firm 1
becomes increasingly cost efficient and dominant, the
Lerner index of firm 2/3 decreases and converges to
zero, while that of firm 1 increases in an approximately



linear fashion. This linearity is indeed consistent with
Corollary 4.1 in the current case of quadratic costs.

Figure 7. Self-sufficiency φ

Figure 8. Modified Lerner index with varying

heterogeneity

We further show in Figures 9 and 10 the net profit
breakdown of firm 1 and firm 2/3, respectively, with
varying heterogeneity. The increasing heterogeneity
implies the dominance of firm 1, for which it has to be
incentivized to take on more supply. However, this does
not necessarily always earn it more net profit, since its
reduced cost coefficient may bring down its production
cost and also improves the overall market efficiency with
a lower system marginal cost. Remarkably, we can
observe some turning points of heterogeneity where firm
1 obtains the most profit, revenue, cost, and subsidy,
respectively. In the meantime, firms 2-3 takes on less
supply that reduces their production cost monotonically.
They start, from zero subsidy/tax in the homogeneous
case, to incur tax as heterogeneity grows. We can
observe similar turning-point behavior for these two
firms in their profit, revenue, and subsidy.

Figure 9. Net profit breakdown of firm 1 with

varying heterogeneity

Figure 10. Net profit breakdown of firm 2 & firm 3

with varying heterogeneity

6. Conclusion

We have studied the competition among firms to
meet given inelastic demand in an oligopolistic market
with supply function bidding. To avoid the efficiency
loss in social cost caused by firms’ strategic bidding
behavior, we design an efficiency recovery mechanism
that exploits only the market quantities to enforce extra
subsidy or tax on individual firms. The mechanism
provably drives the resulting Nash equilibrium to be
efficient, and is able to guarantee self-sufficiency with
proper tuning of its parameter. We further evaluate
numerically the impact of this mechanism on market
outcomes with varying tuning parameters and firm
heterogeneity, based on two metrics of individual
net profit and a modified version of Lerner index.



Case studies show that the tuning parameter controls
the subsidy-tax balance and its choice involves an
intrinsic tradeoff between self-sufficiency and individual
profitability of the market. Besides, more cost efficient
firms that enhance their dominance in the market do
not necessarily earn more profit as they meanwhile
contribute to improving overall efficiency.

Future extensions are broad. To name a few,
first, the market clearing model can be more practical
to account for physical constraints, e.g., production
capacity, transmission congestion. Second, demand
may be elastic and sensitive to prices. Third, it
remains a challenge to set the tuning parameter φ of the
mechanism in real operation. We would aim to address
them in follow-up studies.
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