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Optimal Renewable Power Purchase
Agreements for Data Centers
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Abstract—Data centers have become integral to contemporary
infrastructure. However, their electricity demand significantly
adds to global energy consumption, resulting in substantial elec-
tricity costs and carbon footprints. Power purchase agreements,
when used as bilateral long-term contracts for procuring renew-
able energy, not only hedge against volatility in an electricity
market to secure locked-in prices but also play a crucial role
in reducing carbon emissions. This paper studies the strategy of
a data center to sign such power purchase agreements, which
encompasses an optimal agreement design problem (static) and
an optimal signing timing problem (dynamic) to maximize long-
term expected electricity cost savings. In particular, we develop
a continuous-time stochastic process model for long-term market
price evolution in an electricity market, alongside a power
purchase agreement model comprising the starting time, contract
term, contractual power supply, and locked-in price. These
models enable a novel problem formulation for PPA signing,
which further allows for a tractable solution via decomposition.
We first fix an arbitrary starting time and explicitly analyze how
to set the other three variables with the most expected total
saving. We then propose a dynamic threshold policy that online
identifies an optimal starting time based on real-time observations
of market prices. The proposed strategy is extensively tested
with simulation experiments to validate our theoretical analysis.
Numerical results also provide additional insights – over 35%
reduction in long-term total electricity expenditure can be made
possible for data centers, as long as power purchase agreements
are properly signed.

Index Terms—Power purchase agreement, Bilateral contract,
Electricity market, Data center, Renewable energy.

I. INTRODUCTION

Data centers, as critical infrastructure, have been growing
explosively in the past decade, leading to significant energy
consumption and carbon emissions that negatively impact
climate change. Renewable energy sources, e.g., solar and
wind, emit almost zero greenhouse gases, and are widely
recognized as sustainable alternatives to fossil energy. A
soaring number of data centers are committed, e.g., via the
RE100 initiative [1], to sustainability and climate goals [2],
by purchasing renewable energy to meet demand, reducing
emissions, and improving energy efficiency. However, the
intermittent nature of renewable energy supply makes it unre-
liable for the uninterrupted operation of data centers. In this
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regard, renewable Power Purchase Agreements (PPAs) provide
a promising solution.

A PPA is a long-term bilateral contract between a (com-
mercial or industrial) consumer and a renewable generator.
PPAs may last, say, between 5 and 20 years, during which
the consumer purchases fixed amounts of electricity from
the renewable generator at pre-negotiated prices [3]. On the
one hand, by signing a PPA, the consumer locks in long-
term energy costs, thereby mitigating risks associated with
fluctuating electricity market prices. It also fulfills the commit-
ment to decarbonization by procuring specifically renewable
energy, such as wind and solar. On the other hand, PPAs will
also be favored by the renewable generator as they provide
financial certainty – a catalyst to boost investment in renewable
facilities [4]. In 2023, the global volume of PPAs reached
46GW – a 12% increase compared with the total in 2022.
From 2008 to 2023, the cumulative PPA capacity signed by
corporations exceeded the total installed power generation
capacity of countries such as France, the United Kingdom, and
South Korea [5]. Notably, technology companies – particularly
Google, Microsoft, and Meta – have been at the forefront
of using PPAs to directly procure renewable energy. For
example, Microsoft has committed over 10 billion US dollars
to renewable energy investments to power its data centers [6].
As corporate adoption of PPAs continues to grow, especially
within the technology sector, developing effective strategies to
guide data centers in negotiating and signing PPAs has become
increasingly important.

Recent studies have devoted increasing attention to signing
PPAs, particularly with respect to managing key risk, price
risk, and quantity risk in particular. One stream of research
addresses price risk, which is especially pronounced in long-
term fixed-price PPAs. When electricity market prices fall
consistently below the agreed-upon PPA price, the power pur-
chaser bears substantial financial exposure. To avoid this issue,
[4], [7], [8] study optimal PPA prices and primarily adopt cost-
based models to more accurately assess the Levelized Cost of
Energy (LCOE) in renewable PPAs. These models account
for production constraints and purchase limitations to set a
fair price, but they do not explicitly consider electricity market
price fluctuations. In contrast, other works such as [9] and [10]
apply Nash Bargaining Theory to determine PPA pricing, with
a particular emphasis on economic equilibrium between buyers
and sellers to ensure mutual benefits through negotiation.
Unlike LCOE-based models, these works account for both
generation costs and strategic interactions to determine prices.
However, existing literature typically restricts the focus to
the internalities of PPAs and ignores the external impacts,
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e.g., from alternative electricity markets. Our work advances a
different approach by explicitly modeling long-term electricity
market price behavior and capturing its influence on PPA
performance.

Another major concern in PPA design is quantity risk,
which arises from the intermittent nature of renewable energy
generation. To mitigate such risk, a body of research has
focused on portfolio-based strategies that diversify power
generation assets across technologies and geographies. For
instance, [3] demonstrates that optimizing multi-technology
and multi-location PPA portfolios effectively reduces energy
supply volatility. Similarly, [11] and [12] show that combining
complementary energy sources can mitigate economic risk and
enhance the financial stability of renewable power portfolios.
Dynamic PPAs have also been proposed as a means to
manage quantity risk. These contracts essentially use model
predictive control to adjust decision variables over time based
on predicted market conditions, facilitating flexible responses
from both buyers and sellers [13]. However, the main focus
of these studies remains at the portfolio level, emphasizing
diversification rather than optimization for an individual PPA.
By contrast, our work takes a contract-level perspective and
aims to exploit the flexibility in PPA design to improve PPA
performance.

A third line of research explores investment in renewable
generation capacity under PPA frameworks. These studies typ-
ically examine how fixed-price contracts can incentivize early
investment and ensure long-term access to renewable elec-
tricity. For example, [2] investigates how utilities determine
optimal investment levels in response to fixed-price PPAs,
while [14] analyzes investment decisions using a newsvendor-
style model. Further advancing this line, [15] considers both
investment timing and transfer payment structure, employing
an optimal stopping framework to determine when a firm
should sign a PPA into effect. Although our work is similar
in terms of addressing design and timing of PPAs, it differs in
focus and perspective. Specifically, we approach the problem
from the standpoint of an electricity consumer, i.e., a data
center, and consider not only signing timing for a PPA but also
a more complex contract design, including finer-grained spec-
ifications of the contract term, locked-in price, and contractual
power supply. By incorporating volatile electricity market
prices into our analysis, we provide a novel framework for
consumer-side optimization of renewable energy procurement
via PPAs.

This paper investigates an optimal renewable PPA signing
strategy for a data center, focusing specifically on both (static)
PPA design and (dynamic) optimal signing timing to maximize
long-term electricity expenditure savings. We establish a novel
continuous-time stochastic programming formulation for the
PPA sign problem, incorporating a Geometric Brownian Mo-
tion (GBM) model to characterize the realistic evolution of
electricity market prices over long time horizons. The PPA
is explicitly modeled as a bilateral contract specified by the
starting time, contract term, contractual power supply, and
locked-in price. Leveraging a decomposition approach, we
first derive analytical insights into optimal PPA parameters
for a given starting time, and subsequently develop a dynamic

threshold policy to determine the optimal timing to sign a
PPA into effect. Extensive simulations validate the analytical
results, providing robust insights into the substantial economic
benefits achievable through strategically signing renewable
PPAs.

A comparison with related works is summarized in Table I
to highlight the gaps in the existing literature. Our work
bridges these gaps by simultaneously addressing the optimal
design of a PPA (contract term, contractual power supply, and
locked-in price) and the optimal timing for starting the PPA
based on dynamic electricity market conditions, modeled as
a GBM. We further explicitly demonstrate the advantages of
this integrated approach through extensive simulations that use
real-world electricity market price data from New York ISO,
providing robust insights and actionable decision support for
the PPA signing of a data center.
Contributions of our work. The contributions are mainly
threefold.

• We model the long-term evolution of electricity market
prices using a GBM to capture general tendencies and
fluctuations. This allows us to formulate the PPA signing
problem as a continuous-time stochastic program. To the
best of our knowledge, it is the first work that investigates
the analytical impact of the PPA-market interplay on PPA
decisions.

• We propose an integrated solution to PPA signing that
jointly optimizes static PPA design (contract term, con-
tractual power supply, and locked-in price) given an
arbitrary starting time, and dynamically determines the
optimal starting time by explicitly accounting for evolv-
ing electricity market prices. Our strategy is analytically
sound, straightforward to implement, and adaptive to
market dynamics.

• Extensive numerical simulations based on real-world
electricity market price data illustrate that our PPA sign-
ing strategy can lead to substantial economic benefits
with a possible 35% reduction in long-term electricity
expenditure for a data center. Further sensitivity analyses
provide additional insights into performance robustness
and potential risk.

Organization of this paper. The rest of this paper is organized
as follows: Section II describes our PPA signing model and
problem formulation. Section III summarizes the main analyt-
ical results of the PPA model. Section IV shows the numerical
results. Section V concludes the paper.

NOMENCLATURE

Acronyms
GBM Geometric Brownian Motion
LCOE Levelized Cost of Energy
PPA Power Purchase Agreement
SDE Stochastic Differential Equation
Parameters
λ Currency discount rate
µ Drift constant of a GBM
π(t) Electricity market price at time t subject to a GBM
σ Volatility constant of a GBM
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TABLE I
COMPARISON WITH RELATED WORKS.

References Contract
Design

Signing
Timing

Dynamic
Prices

Decision
Support

Realistic
Simulation

[4], [7], [8] (LCOE Models) ✓ ✗ ✗ ✗ ✓
[9], [10] (Bargaining Models) ✓ ✗ ✗ ✓ ✗

[3], [11], [12] (Portfolio Optimization) ✓ (multi-asset) ✗ ✗ ✓ ✓
[13] (Dynamic PPA) ✓ ✗ ✓ (partially) ✓ ✓

[14], [15] (Investment) ✗ ✓ ✗ ✓ ✗
Our Work ✓ ✓ ✓ ✓ ✓

D(t) Electricity demand of a data center at time t
m Constant
W (t) The Wiener process
Symbols
Tcritical Critical threshold for contract terms
p̄ Upper-bound market price to guarantee nonnegative

expected total saving from a PPA
E Expectation operator
R≥0 Set of nonnegative real numbers
Var Variance operator
ω Realization of market prices
ϕ Optimal value function of PPA signing
S Conditional expected total saving of a PPA (evaluated

at its starting time)
t Continuous time
X(t) Monetary value at time t
Variables
τ Starting time of a PPA
k Contractual power supply of a PPA
p Locked-in price of a PPA
T Contract term of a PPA

II. PROBLEM FORMULATION

Consider a setting where a data center procures renewable
energy to meet its electricity demand by signing a PPA with
a renewable generator. Since both the supply and demand
are time-varying, the data center meanwhile participates in an
electricity market – purchasing electricity when the renewable
energy secured by the PPA is insufficient, while selling elec-
tricity when there is surplus [16]. A diagram of this setting
is illustrated in Fig. 1. In this section, we first describe the
models for the PPA and the electricity market, respectively,
before explicitly formulating our problem of how to optimally
sign the PPA.

A. Power Purchase Agreement

We particularly consider a PPA specified by a quadruple
(τ, T, k, p):

• starting time τ ∈ R≥0: the PPA takes effect starting from
time τ ;

• contract term T ∈ R≥0: the PPA is valid in the time
window [τ, τ + T ];

• contractual power supply k ∈ R≥0: the PPA stipulates
that the renewable generator must provide a fixed amount
k of power supply;

• locked-in price p ∈ R≥0: the contractual power supply is
charged at a fixed unit price p.

Fig 1. Electricity and money flows of a data center. The data center signs
a PPA with a renewable generator to procure renewable energy. Meanwhile,
it trades electricity in an electricity market for any surplus or shortfall of the
PPA.

The total cost of signing the PPA is then simply pkT for
the entire contract term. While such a PPA model is stylized,
it captures key components of practical PPAs and will offer
useful insights for PPA signing. Given a signed PPA, the data
center will use the contractual power supply first to meet its
electricity demand since (i) it is already paid for and reserved;
(ii) it is from carbon-free renewable energy. There are two
possibilities:

1) The contractual power supply k falls short of the real-
time electricity demand. In this case, the data center has
to make up for the shortfall from an electricity market,
subject to time-varying and volatile market prices.

2) The contractual power supply k exceeds the real-time
electricity demand. In this case, the data center can
sell the surplus to the electricity market also at market
prices.1

To focus on the standpoint of the data center, we assume
that the contractual power supply is reliable, i.e., the renewable
generator is always able to provide the fixed amount k of
power supply specified in the PPA. In practice, there is
usually a penalty for failing to fulfill the commitment. For
instance, the renewable generator may be asked to compensate
for the undersupply from the electricity market. Therefore,
approximately, the contractual power supply can be viewed as
guaranteed for the data center. The extension to a potentially
unreliable power supply from the renewable generator falls out
of the scope of this work and will be left for future studies.

1In wholesale electricity markets, clearing prices are identical for suppliers
and consumers at the same locations.
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B. Electricity Market

The data center can participate in an electricity market
to purchase or sell electricity. While on-site small-scale dis-
tributed renewable generation for the data center is possibly
available, we will assume it is all locally consumed and will
not be fed back to power grids, in order to restrict our focus on
the impact of the electricity market on PPA signing. Therefore,
the data center serves as a supplier in the electricity market
only when there is surplus from the PPA. The electricity
market is considered a huge pool with adequate supply and
demand. Therefore, the data center is always able to purchase
or sell any amount of electricity at time-varying market prices
that are treated as an external stochastic input.2

Inspired by the Black–Scholes model in mathematical fi-
nance [17], [18], we adopt a GBM to characterize long-term
stochastic market price behavior in the electricity market, e.g.,
in a time span of 1-2 decades. In particular, denote the market
price at time t as π(t), which is governed by a continuous-time
stochastic process, i.e.,

dπ(t) = µπ(t)dt+ σπ(t)dW (t), ∀t. (1)

(1) is a stochastic differential equation (SDE) parameterized
by a drift constant µ > 0 and a volatility constant σ > 0 to
respectively capture general growth trends and unpredictable
fluctuations of market prices π(t). The randomness is captured
in W (t) subject to the Wiener process [19], [20], [21].

To tackle the SDE (1), we apply Ito’s Lemma to the
particular natural logarithmic function of the market price
ln(π(t)) to attain its derivative [22], [23]:

d[ln(π(t))] =
1

π(t)
dπ(t)− 1

2

1

π2(t)
(dπ(t))2,

which, with (1) plugged in, reduces to

d[ln(π(t))] =

(
µ− σ2

2

)
dt+ σdW (t).

Integrating both sides from time 0 to time t yields

ln(π(t)) = ln(π(0)) +

(
µ− σ2

2

)
t+ σW (t).

By taking the exponential of both sides, we can explicitly
derive the market price π(t) as

π(t) = π(0) exp

((
µ− σ2

2

)
t+ σW (t)

)
. (2)

(2) is the solution of the SDE (1) governing the market
price π(t) and implies that given a positive initial market price
π(0), if µ < σ2

2 holds, we have π(t)→ 0 as t→∞; instead
if µ > σ2

2 holds, we have π(t) → ∞ as t → ∞. Based
on empirical observations, obviously, the former case does
not reflect the long-term evolution of real-world electricity
market prices. Therefore, we will base all our discussions on
the parameterization π(0) > 0 and µ > σ2

2 .

2While the electricity demand of a data center is enormous, it still only
accounts for a tiny portion of the total demand in a national-level or state-
level electricity market. Therefore, we implicitly assume data centers are price
takers.

Further, the expectation of the market price at any time t
can be readily computed from (2):

E[π(t)] = E
[
π(0) exp

((
µ− σ2

2

)
t+ σW (t)

)]
= π(0) exp

((
µ− σ2

2

)
t

)
E[exp(σW (t))]

= π(0) exp

((
µ− σ2

2

)
t

)
exp

(
σ2t

2

)
= π(0)eµt,

(3)

where the third equality follows from the property of the
Wiener process W (t) that is normally distributed with
E[W (t)] = 0 and Var[W (t)] = t.

Denote the electricity demand of the data center at time t
as D(t). Suppose the data center signs a PPA specified by
the quadruple (τ, T, k, p). During the time window [τ, τ +T ],
whenever D(t) > k holds, the data center needs to purchase
the shortfall D(t)−k from the electricity market at the market
price π(t), leading to an instantaneous cost of π(t)(D(t)−k).
Whenever D(t) < k holds, the data center can sell the surplus
k − D(t) to the electricity market also at the market price
π(t). This earns the data center an instantaneous revenue of
π(t)(k−D(t)). Note that outside the time window [τ, τ+T ] or
if no PPA is signed, all the electricity demand of the data center
has to be met with the supply from the electricity market,
which implies an instantaneous cost π(t)D(t) at time t.

C. Problem Formulation

The goal of optimizing PPA signing is to minimize the
expected total electricity expenditure of the data center over
the entire time horizon. However, as the time span considered
in our work could span decades, it is important to account
for currency depreciation due to inflation. To this end, we
introduce a constant discount rate λ ∈ (0, 1) to capture the
change in monetary values across time:

dX(t)

dt
= λX(t), (4)

where X(t) denotes the value of a certain amount of money
at time t. Consider the starting time τ of a PPA, it can be
readily verified that the solution of (4) satisfies

X(τ) = X(t)e−λ(t−τ),

which basically reflects the equivalent value at time τ for the
amount of money that is worth X(t) at any time t. On this
basis, we are ready to formulate the problem of signing an
optimal PPA.

In the presence of a PPA (τ, T, k, p), the total electricity
expenditure of the data center during the time window [τ, τ +
T ] when the PPA is valid, adjusted to the equivalent value at
time τ , can be explicitly given by

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2025.3646335

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 12:57:21 UTC from IEEE Xplore.  Restrictions apply. 



5

Expenditure with PPA∫ τ+T

τ

e−λ(t−τ)π(t)max{0, D(t)− k} dt

−
∫ τ+T

τ

e−λ(t−τ)π(t)max{0, k −D(t)} dt

+ pkT

=

∫ τ+T

τ

e−λ(t−τ)π(t)(D(t)− k) dt+ pkT,

(5)

which consists of the (discounted) total cost of market pur-
chase in case of shortfall, the (discounted) total revenue of
market selling in case of surplus, and the PPA signing cost.
The equality in (5) holds since market purchase and selling
do not occur simultaneously for the data center.

In the absence of the PPA, the electricity demand of the
data center is all fulfilled in the electricity market. The
corresponding (discounted) total electricity expenditure is
Expenditure without PPA∫ τ+T

τ

e−λ(t−τ)π(t)D(t) dt. (6)

As we explore the benefits of signing the PPA, it is more
convenient to focus on the total saving, defined as

Expenditure without PPA− Expenditure with PPA

=

∫ τ+T

τ

e−λ(t−τ)π(t)D(t) dt

−
∫ τ+T

τ

e−λ(t−τ)π(t)(D(t)− k) dt− pkT

=k

∫ τ+T

τ

e−λ(t−τ)π(t) dt− pkT.

(7)
As far as the PPA is concerned, the total saving (7) is
an equivalent indicator for the total electricity expenditure
since the benchmark expenditure without the PPA is for sure
independent of PPA signing. While the PPA is not valid outside
the time window [τ, τ + T ], when to sign it into effect, i.e.,
τ , still plays a key role in improving the total saving.

Given the uncertainty in future market prices π(t), the
problem of signing the PPA can be explicitly formulated as a
stochastic program:

max
(τ,T,k,p)

E

[
e−λτ ·

(
k

∫ τ+T

τ

e−λ(t−τ)π(t) dt− pkT

)]
,

(8)
where the discount e−λτ is included to fairly evaluate the
saving at any possible starting time τ .

The PPA signing problem (8) is still, in general, difficult to
solve. However, in the next section, we propose to decompose
it in a tractable manner such that the data center tackles a
static PPA design problem first by optimizing (T, k, p) only
for any given τ , and then determines the starting time τ from
a dynamic online perspective.

III. ANALYSIS AND RESULTS

In this section, we first analyze for a given starting time
τ of the PPA how to set the contract term T , the contractual

power supply k, and the locked-in price p that lead to the most
expected total saving. We then exploit this insight to develop
a dynamic threshold policy that online identifies an optimal
starting time τ using real-time observations of market prices.

A. How to Design a PPA

Suppose at a given starting time τ , the data center signs a
PPA into effect. Define

S(π(τ)) := E

[
k

∫ τ+T

τ

e−λ(t−τ)π(t) dt− pkT
∣∣∣ π(τ)]

to be the expected total saving of the PPA (evaluated at time τ )
conditional on the observed market price π(τ). The following
lemma characterizes its expected total saving.

Lemma 1. The expected total saving of a PPA starting from
time τ , conditional on the observed market price π(τ), can be
explicitly expressed as

S(π(τ)) =
kπ(τ)

µ− λ

(
e(µ−λ)T − 1

)
− pkT. (9)

Proof. A similar argument to (2) will lead to

π(t) = π(τ) exp

((
µ− σ2

2

)
(t− τ) + σ(W (t)−W (τ))

)
.

When π(τ) is observed, for t ∈ [τ, τ + T ] we have

E[π(t) | π(τ)] = π(τ)eµ(t−τ), (10)

following (3). Then it immediately leads to

S(π(τ)) =kπ(τ)

∫ τ+T

τ

e−λ(t−τ)eµ(t−τ) dt− pkT

=kπ(τ)

∫ τ+T

τ

e(µ−λ)(t−τ) dt− pkT

=
kπ(τ)

µ− λ

(
e(µ−λ)T − 1

)
− pkT.

(11)

Given Lemma 1, we first analyze particularly the impact of
the contract term T on the expected total saving S under two
scenarios: µ > λ and µ < λ. Note that T = 0 immediately
implies S = 0 and ∂S

∂T = k(π(τ)−p) from (9). The following
discussion is predicated on k > 0.

1) µ > λ, i.e., the growth rate of market prices is larger
than the currency discount rate.

• p < π(τ): Note that ∂S
∂T is positive for any T ≥ 0.

Therefore, the PPA always yields a positive ex-
pected total saving that is increasing in the contract
term T > 0.

• p > π(τ): Note that ∂S
∂T increases in T , starting

negative but growing to be positive with T >
ln p−lnπ(τ)

µ−λ . Therefore, the expected total saving
initially decreases in T and becomes negative. It
reaches the minimum value with T = ln p−lnπ(τ)

µ−λ .
Then the expected total saving changes to increase
in T and become positive with T > Tcritical, where
Tcritical > 0 is the solution to S(π(τ)) = 0.
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In case of µ > λ, a short message from above is to
pursue the longest possible contract term for the PPA.
This is consistent with the intuition when electricity
market prices are growing at a fast pace.

2) µ < λ, i.e., the currency discount rate is larger than the
growth rate of market prices.

• p < π(τ): Note that ∂S
∂T decreases in T , starting

positive but growing to be negative with T >
ln p−lnπ(τ)

µ−λ . Therefore, the expected total saving
initially increases in T and becomes positive. It
reaches the maximum value with T = lnπ(τ)−ln p

λ−µ .
Then the expected total saving changes to decrease
in T and become negative with T > Tcritical, where
Tcritical > 0 is the solution to S(π(τ)) = 0. In this
case, it is risky to sign the PPA with excessively
long contract terms, despite p < π(τ).

• p > π(τ): Note that ∂S
∂T is negative for any T ≥ 0.

Therefore, the PPA always yields a negative ex-
pected total saving that is decreasing in the contract
term T > 0. In this case, it is better off without the
PPA.

The above analysis can be summarized into the following
proposition:

Proposition 1. Suppose the data center signs a PPA
(τ, T, k, p) at time τ upon observing the market price π(τ).

• In case of µ > λ, the conditional expected total saving of
the PPA is positive if either (i) p < π(τ) or (ii) p ≥ π(τ)
and T > Tcritical. Moreover, it increases in T and k, while
decreasing in p.

• In case of µ < λ, the optimal contract term is given by

T ∗ =

{
lnπ(τ)−ln p

λ−µ , if p < π(τ),

0, if p ≥ π(τ).
(12)

The corresponding conditional expected total saving is

S(π(τ)) =

{
kp−kπ(τ)−pk(ln p−lnπ(τ))

µ−λ , if p < π(τ),

0, if p ≥ π(τ).
(13)

which, in case of p < π(τ), increases in k, while
decreasing in p.

Note that the locked-in price p also plays a key role. First,
T ∗ decreases in the locked-in price p in case of p < π(τ).
Intuitively, it shall be worth extending the contract term of a
PPA with a lower locked-in price. Second, from (9) there exists
an upper-bound market price p̄ such that as long as p ≤ p̄,
the PPA is beneficial, i.e., S(π(τ)) ≥ 0. p̄ can be noted down
explicitly as

p̄ =
π(τ)[e(µ−λ)T − 1]

(µ− λ)T
, (14)

which leads to more insights:
1) µ > λ: p̄ increases in T . This also explains why in the

case of p ≥ π(τ), the PPA becomes beneficial to cut
expenditure only when the contract term T exceeds the
critical threshold Tcritical.

2) µ < λ: p̄ decreases in T . In particular, in the case of
p ≥ π(τ) > p̄, the PPA cannot achieve any saving.

Therefore, the locked-in price p has to be set below the
market price π(τ) when the PPA is signed into effect.

B. When to Sign a PPA

We now turn to the second part of the PPA signing problem
(8), where in practice the data center has to identify online the
optimal timing to sign and start a PPA, as market prices are
observed sequentially.

We are inspired by the classical problem of optimal stopping
to weigh signing a PPA immediately against taking a wait-and-
see stance. In particular, given the initial market price π(0) =
ω, denote the optimal expected total saving of a PPA in (8)
by

ϕ(ω) := max
τ

E
[
e−λτS(π(τ)) | π(0) = ω

]
, (15)

where we assume S(π(τ)) has been optimized with proper
choice of (T, k, p), as discussed in Section III-A. ϕ(ω) is
essentially the optimal value function of PPA signing and
corresponds to an optimal starting time τ∗ of the PPA. More-
over, τ∗ can be more explicitly characterized by the following
lemma.

Lemma 2. There is a unique ω∗ such that the optimal starting
time of the PPA is τ∗ = inf{t ≥ 0 : π(t) ≥ ω∗}.

See [24] for the proof. Lemma 2 basically suggests that there
exists a unique threshold ω∗ such that whenever the market
price π(t) first goes beyond this threshold, it is the optimal
timing to sign and start the PPA. Next, we focus on solving
for ω∗.

Since the market price behavior follows a GBM, Ito’s
Lemma requires the optimal value function ϕ(ω) to satisfy
the Hamilton–Jacobi–Bellman (HJB) equation:

ϕ(ω) = max{S(ω), 1
λ
µωϕ′(ω) +

1

2λ
σ2ω2ϕ′′(ω)}. (16)

A more detailed derivation of (16) can be found in Ap-
pendix A. It implies that the optimal value function weighs
the immediate payoff (the expected total saving of the PPA)
from signing the PPA now against the expected payoff from
taking a wait-and-see stance. Based on (16), it can be inferred
that in the case of ϕ(ω) > S(ω), i.e., the expected wait-and-
see payoff is higher than the immediate payoff, the data center
is better off skipping the current signing opportunity. Instead,
in case of ϕ(ω) = S(ω), it indicates the optimal timing to
start the PPA immediately.

Recall that S(ω) is an increasing function of ω from (9).
Therefore, the threshold ω∗ should satisfy

S(ω∗) =
1

λ
µω∗ϕ′(ω∗) +

1

2λ
σ2ω∗2ϕ′′(ω∗), (17a)

along with the regularity conditions

S(ω∗) = ϕ(ω∗), (17b)

S′(ω∗) = ϕ′(ω∗). (17c)

Notably, (17b) enforces value matching while (17c) enforces
smooth pasting at the threshold ω∗. More specifically, the
threshold ω∗ is characterized in the following proposition.
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Proposition 2. The threshold ω∗ satisfying (17) is given by

ω∗ =
pmT (µ− λ)

[e(µ−λ)T − 1](m− 1)
, (18)

with

m :=
(σ2 − 2µ) +

√
(2µ− σ2)2 + 8λσ2

2σ2
. (19)

The proof is provided in Appendix III-B. Combining Proposi-
tion 1 and Proposition 2, we can further pin down the threshold
ω∗ in the following corollary:

Corollary 1. In case of µ < λ and p < π(τ), the threshold
ω∗ satisfying (12) and (18) is the solution to

(p− ω∗)(m− 1)− pm(ln p− lnω∗) = 0. (20)

We summarize the timing strategy to start a PPA in the
following proposition:

Proposition 3. Suppose the data center observes the market
price π(t) sequentially.

• In case of µ > λ, it is optimal to start the PPA
immediately, i.e., ϕ(ω) = S(ω).

• In case of µ < λ, the data center should sign and start
the PPA whenever the market price π(t) first exceeds the
threshold ω∗ given by (18). In this case, the optimal value
function ϕ(ω) depends on S(ω) via

ϕ(ω) =

{
e−λτ∗

S(ω∗), if π(0) < ω∗,

S(ω), if π(0) ≥ ω∗.
(21)

When the growth rate µ of market prices is larger than
the currency discount rate λ, we have m < 1 in (19), which
guarantees that ω∗ ≤ 0 always stays below π(t) for ∀t ≥ 0.
Therefore, it is optimal to start the PPA immediately. This is
consistent with Proposition 1 that suggests the longest possible
contract term is preferred in this case. On the contrary, µ < λ
leads to m > 1, and the data center should only proceed to
start the PPA when π(t) ≥ ω∗ first occurs. Due to the continu-
ity of ϕ(ω) and S(ω) as required in (17), the optimal starting
time τ∗ in Lemma 2 reduces to τ∗ = inf{t ≥ 0 : π(t) = ω∗},
meaning that it is optimal to start the PPA whenever the
threshold ω∗ is reached.

Corollary 2. If the data center starts the PPA at the opti-
mal starting time τ∗, the conditional expected total saving
S(π(τ∗)) is given by

S(ω∗) =
k(p− ω∗)

(µ− λ)m
, (22)

with the corresponding optimal value function

ϕ(ω) =
k(p− ω∗)

(µ− λ)mω∗mωm. (23)

Finally, we outline the key steps to implement the proposed
PPA signing strategy in Algorithm 1 below.3

3While we adopt a continuous-time model for analysis and design, in
practice, decisions are made in discrete time.

Algorithm 1: PPA Signing Strategy
Data: µ, σ, λ
Result: (τ, T, k, p)
t← 0 ;
τ ← −1 ; /* PPA is not signed yet */
while τ ̸= t do

k ← maximum possible ;
p← minimum possible ;
if µ > λ then

τ ← t ; /* Start PPA now */
T ← maximum possible ;

else
Observe π(t) ;
if π(t) ≤ p then

t← t+ 1 ; /* Defer PPA */
else

Compute ω∗ by solving (20) ;
if π(t) ≥ ω∗ then

τ ← t ;
T ← T ∗ based on (12) ;

else
t← t+ 1 ;

end
end

end
end

IV. SIMULATION

In this section, we demonstrate the proposed strategy for
PPA signing by assessing total saving using real-world elec-
tricity market prices from New York ISO spanning 2015 to
2025 [25]. Based on the data, we estimate for market prices an
annual growth rate µ = 0.15 and an annual volatility constant
σ = 0.48. The initial market price is set to π(0) = 38$/MWh.
The currency discount rate λ is fixed at 0.05. Monte Carlo
experiments of 3000 simulation runs are carried out for each
test result to show its statistical pattern. Further, a series of
sensitivity analyses is conducted to illustrate the robustness of
the test results by varying key parameters, including the GBM
constants µ and σ, the PPA locked-in price p, and the currency
discount rate λ.

Base case with λ = 0.05 and p = 36$/MWh, i.e., µ > λ and
p < π(0). We show particularly how the total saving of the
PPA changes with respect to the contract term T , along with
the impact of µ and σ in Fig. 2 and Fig. 3, respectively. The
solid lines represent the sample averages of the total saving due
to PPA signing over 3000 simulation runs, while the shaded
areas represent the interquartile range (IQR) between the 25th
and 75th percentiles. In both figures, the expected total saving
exhibits approximately exponential growth in terms of the
contract term T , which is consistent with our analysis that sug-
gests starting the PPA immediately with the longest possible
contract term. Moreover, it is observed that both an increase in
µ and σ leads to a larger expected total saving. The former is
straightforward due to the faster growth of market prices. The
latter is empirical due to limited samples but illustrates the
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Fig 2. Total saving with respect to contract term T under different µ’s (σ =
0.48, p = 36$/MWh, λ = 0.05).
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Fig 3. Total saving with respect to contract term T under different σ’s (µ =
0.15, p = 36$/MWh, λ = 0.05).

benefit of the PPA in hedging against price volatility. Notably,
the IQR of the total saving of the PPA grows rapidly over
time, reflecting the fact that the uncertainty (variance) in the
logarithm of electricity market prices increases linearly in time
for a GBM, as shown in (2).

Base case with λ = 0.05 and p = 55$/MWh, i.e., µ > λ
and p > π(0). For comparison, Fig. 4 and Fig. 5 display
the impact of the relative relation between p and π(0). In
this case, the expected total saving starts with a decline but
soon switches to grow exponentially after the contract term
T exceeds ln p−lnπ(0)

µ−λ ≈ 3.7 years (Fig. 5). This implies that
signing a PPA with short contract terms (T < Tcritical) may not
be economically beneficial. Additionally, it can be observed
that Tcritical decreases in µ and σ (empirical observation only),
which is aligned with the previous analysis for the expected
total saving.

Artificial cases with λ = 0.16, i.e., µ < λ. To further
show the impact of the relative relation between µ and λ,
we consider a set of artificial cases where λ is increased to
0.16 while the rest parameters remain the same. In case of
p = 36$/MWh < π(0), as shown in Fig. 6 and Fig. 7, the PPA
achieves the expected total saving that first grows and then de-
clines, and could even become negative when the contract term
T is too long. It can be similarly observed that the maximum is
achieved by the optimal contact term T ∗ = lnπ(0)−ln p

λ−µ ≈ 5.4
years (Fig. 7). Further, Fig. 6 suggests that T ∗ increases in
µ, which is aligned with both the analysis and the intuition
that faster-growing market prices would incentivize the data
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Fig 4. Total saving with respect to contract term T under different µ’s (σ =
0.48, p = 55$/MWh, λ = 0.05).
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Fig 5. Total saving with respect to contract term T under different σ’s (µ =
0.15, p = 55$/MWh, λ = 0.05).

center to pursue longer contract terms. For completeness, we
also test the case with p = 55$/MWh > π(0). Fig. 8 and
Fig. 9 basically echo our analysis that it is better off without
the PPA in this case.

A summary of the sensitivity analysis for the base cases
is presented in Table II, where the contract term is set to
T = 8 years – the longest considered in the experiments.
In general, the expected total saving seems more sensitive to
µ than to σ, particularly reflected by the relative change with
respect to the benchmark case of µ = 0.15 and σ = 0.48.
For instance, in the p < π(0) case, a modest increase in µ by
0.005 leads to a 9.09% increase in the expected total saving.
The relative saving provides a more straightforward measure
of cost reduction with the PPA. Obviously, if p < π(0) can
be achieved in negotiation, the benefit of the PPA will be
tremendously enhanced. The median of total savings provides
additional insights into its positively skewed distribution under
uncertainty, i.e., the distribution is biased towards small or
even negative total savings. It suggests that while the expected
total saving could be promising, there are hidden risks unac-
counted for in our work. We would like to leave risk-averse
PPA signing strategies for future studies.

V. CONCLUSION

This paper studies the problem of how to sign a PPA
for a data center with the most expected total savings. We
first establish a novel stochastic programming formulation for
such a problem by modeling PPA decisions using a quadruple
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TABLE II
SENSITIVITY ANALYSIS FOR TOTAL SAVING OF PPA

Case µ σ Mean (Million$) Relative Change Relative Saving Median (Million$)

p < π(0)

0.15 0.48 172.48 – 37.46% 24.10
0.145 0.48 159.00 -7.81% 35.57% 24.80
0.155 0.48 188.16 9.09% 39.52% 36.58
0.15 0.475 169.41 -1.78% 37.04% 32.81
0.15 0.485 177.39 2.85% 38.12% 28.28

p > π(0)

0.15 0.48 20.48 – 4.45% -127.90
0.145 0.48 7.00 -65.79% 1.57% -127.20
0.155 0.48 36.16 76.61% 7.59% -115.42
0.15 0.475 17.41 -14.97% 3.81% -119.19
0.15 0.485 25.39 23.98% 5.46% -123.72
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Fig 6. Total saving with respect to contract term T under different µ’s (σ =
0.48, p = 36$/MWh, λ = 0.16).
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Fig 7. Total saving with respect to contract term T under different σ’s (µ =
0.15, p = 36$/MWh, λ = 0.16).

and long-term evolution of electricity market prices using a
GBM. We then propose an integrated PPA signing strategy
to tackle the problem: (i) given an arbitrary starting time,
we analytically set the corresponding optimal contract term,
contractual power supply, and locked-in price; (ii) we develop
a threshold policy to dynamically pick an optimal starting time
based on real-time observations of market prices. Our analysis
leads to several novel results that offer analytical guidelines
for practical PPA signing. In particular, we identify scenarios
in which a PPA is not profitable – an important message to
avoid signing inadvisable PPAs. Our dynamic threshold policy
is friendly to implement – computing a threshold online and
comparing it with the real-time market price. Our numerical
results provide additional insights – different parameter sensi-
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Fig 8. Total saving with respect to contract term T under different µ’s (σ =
0.48, p = 55$/MWh, λ = 0.16).
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Fig 9. Total saving with respect to contract term T under different σ’s (µ =
0.15, p = 55$/MWh, λ = 0.16).

tivity and potential risk due to the skewed distribution of PPA
performance.

Limitations and future directions. There are several limita-
tions in our work that open avenues for future studies. First,
a more general PPA model beyond the quadruple (τ, T, k, p)
would be closer to contractual practices. Second, it becomes
technically more challenging in the presence of an unreliable
power supply from a PPA. Third, a risk-averse strategy to sign
PPAs would be more attractive under asymmetric uncertainty.
Last, an extension to managing multiple PPAs along with other
asset options via portfolio optimization would have practical
implications for a return-risk tradeoff.
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APPENDIX

A. Optimality of the HJB Equation

Over a sufficiently small time interval ∆t, the data center
faces two options: starting a PPA or continuing waiting.
Assuming the data center chooses to wait during ∆t, and given
that π(t) follows a GBM, we apply Ito’s Lemma to derive the
following equation:

ϕ(π(∆t))− ϕ(π(0))

=

∫ ∆t

0

ϕ′(π(0)) dπ(t) +

∫ ∆t

0

1

2
ϕ′′(π(0))(dπ(t))2.

Because dπ(t) = µπ(t)dt+ σπ(t)dW (t), we have

ϕ(π(∆t))

= ϕ(ω) +

∫ ∆t

0

ϕ′(ω)[µωdt+ σωdW (t)]

+
1

2

∫ ∆t

0

ϕ′′(ω)[µωdt+ σωdW (t)]2

= ϕ(ω) + µωϕ′(ω)∆t+

∫ ∆t

0

ϕ′(ω)σωdW (t)

+
1

2
ϕ′′(ω)

∫ ∆t

0

[µωdt+ σωdW (t)]2 + o(∆t)

= ϕ(ω) + µωϕ′(ω)∆t+

∫ ∆t

0

ϕ′(ω)σωdW (t)

+
1

2
ϕ′′(ω)

∫ ∆t

0

σ2ω2(dW (t))2 + o(∆t).

Using (dW (t))2 = dt and

ϕ(ω) = E[e−λ∆tϕ(π(∆t))|π(0) = ω],

we have

ϕ(ω) = E[e−λ∆t(ϕ(ω) + µωϕ′(ω)∆t+

∫ ∆t

0

ϕ′(ω)σωdW (t)

+
1

2
ϕ′′(ω)

∫ ∆t

0

σ2ω2(dW (t))2 + o(∆t))

= e−λ∆t(ϕ(ω) + µωϕ′(ω)∆t+ E[
∫ ∆t

0

ϕ′(ω)σωdW (t)]

+
1

2
ϕ′′(ω)σ2ω2∆t+ o(∆t))

= e−λ∆t(ϕ(ω) + µωϕ′(ω)∆t+
1

2
ϕ′′(ω)σ2ω2∆t+ o(∆t)),

where the last equality follows from

E

[∫ ∆t

0

ϕ′(ω)σω dW (t)

]
= 0.

We then simplify the expression by noting that e−λ∆t = 1−
λ∆t + o(∆t) for sufficiently small ∆t, and conduct simple
algebraic transformation to derive:

ϕ(ω) = ϕ(ω) +

(
µωϕ′(ω) +

1

2
ϕ′′(ω)σ2ω2 − λϕ(ω)

)
∆t+ o(∆t).

Since lim∆t→0
o(∆t)
∆t = 0, we can obtain the following

differential equation:

ϕ(ω) =
µω

λ
ϕ′(ω) +

σ2ω2

2λ
ϕ′′(ω).
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On the other hand, if the data center chooses to stop waiting
and initiate a PPA contract immediately, we have

ϕ(ω) = S(ω).

Since ϕ(ω) captures the maximum value between the immedi-
ate payoff from signing the PPA and the expected payoff from
continuing to wait, the HJB equation (16) holds.

B. Proof of Proposition 2

Before determining the threshold ω∗, it is essential to first
establish the form of ϕ(ω). Assuming ϕ(ω) = c · ωx is a
reasonable approach to solving the HJB equation. When ϕ(ω)
satisfies the equation ϕ(ω) = 1

λµωϕ
′(ω) + 1

2λσ
2ω2ϕ′′(ω),

differentiating ϕ(ω) yields

cωx =
µ

λ
cxωx +

σ2

2λ
c(x2 − x)ωx.

Solving the equation above gives

m =
(σ2 − 2µ) +

√
(2µ− σ2)2 + 8λσ2

2σ2
> 0,

n =
(σ2 − 2µ)−

√
(2µ− σ2)2 + 8λσ2

2σ2
< 0.

Therefore, we obtain two linearly independent particular so-
lutions, i.e. cωm and cωn and we can conclude that

ϕ(ω) = c1ω
m + c2ω

m.

Since the market price π(τ) follows a GBM, according to (2),
we know that π(t) ≡ 0 holds at any time in case of ω = 0,
which implies ϕ(ω) = 0. With w → 0, we have wn → +∞
with n < 0, which implies c2 = 0. Therefore, we can obtain

ϕ(ω) = c1ω
m.

According to (17b) and (17c), we have mS(ω) = ωS′(ω),
leading to

ω∗ =
pmT (µ− λ)

[e(µ−λ)T − 1](m− 1)
.

In case of µ < λ and p < π(τ), there exists the optimal PPA
contract term T ∗ = ln p−lnπ(τ)

µ−λ . Combining the above yields

(p− ω∗)(m− 1)− pm(ln p− lnω∗) = 0.
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