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Online Electricity Purchase for Data Center with Dynamic Virtual
Battery from Flexibility Aggregation

Kekun Gao, Yuejun Yan, Yixuan Liu, Endong Liu, and Pengcheng You

Abstract— As a critical component of modern infrastructure,
data centers account for a huge amount of power consumption
and greenhouse gas emission. This paper studies the electricity
purchase strategy for a data center to lower its energy cost
while integrating local renewable generation under uncertainty.
To facilitate efficient and scalable decision-making, we propose
a two-layer hierarchy where the lower layer consists of the
operation of all electrical equipment in the data center and
the upper layer determines the procurement and dispatch of
electricity. At the lower layer, instead of device-level scheduling
in real time, we propose to exploit the inherent flexibility in
demand, such as thermostatically controlled loads and flexible
computing tasks, and aggregate them into virtual batteries. By
this means, the upper-layer decision only needs to take into
account these virtual batteries, the size of which is generally
small and independent of the data center scale. We further
propose an online algorithm based on Lyapunov optimization
to purchase electricity from the grid with a manageable energy
cost, even though the prices, renewable availability, and battery
specifications are uncertain and dynamic. In particular, we
show that, under mild conditions, our algorithm can achieve
bounded loss compared with the offline optimal cost, while
strictly respecting battery operational constraints. Extensive
simulation studies validate the theoretical analysis and illustrate
the tradeoff between optimality and conservativeness.

I. INTRODUCTION

Data centers, serving as the crucial infrastructure within

the contemporary digital economy, are experiencing a rapid

increase in energy demand owing to their continuously

expanding scale. As large energy consumers, data centers

spend nearly 30% to 50% percent of their operating costs

on energy bills, where a significant proportion of the elec-

tricity consumed originates from the electricity spot market.

Due to the huge energy consumption of data centers, a

1% improvement in power efficiency would save millions

of dollars for the cloud service providers, which has led

to growing attention on minimizing energy costs through

optimizing spot market transactions. To address this issue,

one feasible option is to use the flexibility of data centers’

power equipments to reduce energy costs and absorb green

power generation. Currently, data centers are commonly

equipped with renewable energy generation, yet their energy

supply is highly influenced by climatic conditions, rendering

it intermittent and difficult to predict [1], [2]. Furthermore,
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electricity prices in the spot market fluctuate in real time,

and the demand-side flexibility of data centers has great

randomness. Faced with the randomness of flexible loads,

volatility of electricity prices, and intermittency of renewable

energy, minimizing the data center in spot market energy

cost in the absence of future statistical knowledge poses a

challenging problem.

There have been numerous related works addressing the

optimization of electricity procurement for data centers.

Some existing works use storage and price changes to

address time-dimensional shifts in energy demand [3], [4].

Some works formulate these problems as a stochastic op-

timization problem and introduce Lyapunov optimization

technologies to make real-time decisions. [5] and [6] take

the uncertainty of electricity price and load into considera-

tion during optimization, a two-time scale power market is

considered in [7], and Zhang et al. investigate the problem

of energy management for data centers with renewable

resources and energy storages to minimize electricity cost by

leveraging the diversity of these system states [8]. However,

these works either fail to consider energy storage or only

consider real battery-based energy storage. In other words,

they do not aggregate other flexible loads and energy storage

available in data centers to form virtual batteries, resulting

in under-utilization of the flexibility of data center loads.

In reality, a data center comprises various heterogeneous

classes of flexible loads. We can integrate these loads in

the data center into system-level operation and control them

by constructing a simple and user-friendly model. Among

various modeling methods, the virtual battery model gains

its popularity due to its simple and compact form. It aims

to quantify the aggregate flexibility while considering the

physical constraints of each individual load. Specifically,

the virtual battery model constitutes a scalar linear system,

akin to a simplified representation of battery dynamics, with

parameters denoting charge and discharge power constraints,

and energy capacity limits. Studies have demonstrated the

ability of virtual battery models to effectively capture the

aggregate flexibility of diverse classes of flexible loads. [9],

[10], and [11] model the aggregate flexibility of deferrable

tasks and Thermostatically Controlled Loads (TCLs), respec-

tively. Hao et al. first consider four types of flexible loads:

TCLs, distributed energy storages, residential pool pumps,

and electric vehicles, and for each type of load, they derive

a closed-form approximation for the aggregate flexibility set

based on the individual load parameters [12]. [13] further

considers the heterogeneous arrival time of deferrable loads,

and also tries to get the close-form battery approximation.
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In [14] and [15], the authors simplify the problem of identi-

fying battery parameters to a polynomial complexity, which

further contributes to the application of the virtual battery

in the distributed energy resources’ flexibility management.

Therefore, aggregating the individual flexible loads of the

data center as a virtual battery can significantly improve the

rationality of electricity purchase and reduce energy costs.

The objective of this paper is to devise an online strategy

for managing the power purchasing policy of data centers

that integrate time-varying virtual batteries and renewable

energy resources, with the aim of minimizing long-term costs

while meeting the energy demand. By leveraging Lyapunov

optimization techniques, we develop an online algorithm

to address this problem. We demonstrate that the proposed

algorithm achieves close-to-optimal performance even in the

presence of time-varying parameters of the virtual battery,

without requiring prior knowledge of statistics. The cost

incurred is at most higher than the optimal algorithm by

O(1/V ), where V is a controllable parameter balancing the

trade-off between energy cost and virtual battery capacity.

Furthermore, we provide explicit solutions for control actions

under current system dynamics, ensuring the efficiency of

our algorithm. Finally, the simulation results validate the

effectiveness of the proposed algorithm.

II. SYSTEM MODEL

Consider the system operation of a data center in a

discrete-time horizon t ∈ {0, 1, 2,...}, which uses electricity

power from a utility grid and local renewable generation to

meet its energy demand. We divide the overall demand into

two categories: one is controllable, e.g., TCLs of cooling

systems and flexible computing tasks of IT equipment, and

the other is non-controllable including necessary power to

support basic services, uninterruptible computing tasks with

priority, etc. We propose to aggregate controllable demand

into virtual batteries such that the flexibility can be exploited

in a computationally efficient way to manage electricity

purchase. A schematic diagram of the system model is

given in Figure 1. We develop the detailed model for each

component of the system below.

Fig. 1: Electricity flows in a data center with virtual batteries.

A. Virtual Battery

In this subsection, we use TCLs and flexible computing

tasks, the two most common loads in the data center,

as examples to show how virtual batteries can be aggre-

gated. In particular, a virtual battery is specified by a tu-

ple of parameters (Bchar(t), Bdis(t), Bmin(t), Bmax(t), α),
where Bchar(t)/Bdis(t) is the charge/discharge rate limit,

Bmin(t)/Bmax(t) is the lower/upper bound of battery capac-

ity, and α is the dissipation rate. Given such a specification, a

virtual battery is modeled by two variables - the battery State-

of-Charge (SoC) B(t) and the energy injection/withdrawal

U(t) - subject to the following:

−Bdis(t) ≤ U(t) ≤ Bchar(t), ∀t, (1a)

B(t+ 1) = αB(t) + U(t), ∀t, (1b)

Bmin(t) ≤ B(t) ≤ Bmax(t), ∀t. (1c)

TCL: The role of a TCL, mainly a cooling system, of the

data center is to maintain required room temperatures for IT

equipment. Such a requirement is typically captured by a set

of thermodynamics equations and operational constraints:

θ(t+ 1) = αθ(t) + (1− α) (θa(t) + cr(t)− bp(t)) , ∀t,
(2a)

θr −Δ ≤ θ(t) ≤ θr +Δ, ∀t, (2b)

0 ≤ p(t) ≤ pm, ∀t. (2c)

Here the variables are the room temperature θ(t) and the

operating power p(t) of the TCL. The external inputs include

the operating power of IT devices in the room r(t) and

the ambient temperature θa(t). The parameters include the

room temperature setpoint θr with a tolerance gap Δ, the

maximum TCL power pm, the coefficient c that reflects the

temperature rise per unit of IT power, and the coefficient

b that reflects the temperature drop per unit of the TCL

power [12], [16].

Note that there exists a nominal value po(t) for p(t) that

can set the immediate room temperature to the setpoint θr,

given by

p0(t) =
θa(t) + cr(t)− θr

b
.

By defining

B(t) :=
θr − θ(t)

(1− α)b
, U(t) := p(t)− po(t),

we obtain

−p0(t) ≤ U(t) ≤ pm − p0(t), ∀t, (3a)

B(t+ 1) = αB(t) + U(t), ∀t, (3b)

− Δ

(1− α)b
≤ B(t) ≤ Δ

(1− α)b
, ∀t. (3c)

It is obvious from (3) that the flexibility of a TCL can be

represented as a virtual battery, parameterized by(
pm − po(t), po(t), − Δ

(1− α)b
,

Δ

(1− α)b
, α

)
.

2
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Delay-Tolerant Computing Task: A lot of SQL or machine

learning tasks are flexible with the processing schedule,

as long as they are completed before a specified deadline.

Consider a set of such tasks, each (task j) parameterized by

(aj , dj , L̄j , Ej), denoting the arrival time, the deadline, the

power consumption corresponding to the maximum process-

ing speed, and the total energy required to complete the task,

respectively. Let Lj(t) be the allocated power to task j at

time t. Then the task can be characterized as

0 ≤ Lj(t) ≤ L̄j , ∀t ∈ [aj , dj) (4a)

Lj(t) = 0, ∀t /∈ [aj , dj) (4b)∑
t

Lj(t) = Ej . (4c)

The aggregate flexibility of this set of tasks can also be

approximated as a virtual battery [12]. Define in this case

B(t) :=
∑
τ<t

∑
j

Lj(t), U(t) :=
∑
j

Lj(t).

Obviously, U(t) cannot exceed the sum of the maximum

power consumption of all active tasks, i.e.,

0 ≤ U(t) ≤
∑

j:aj≤t<dj

L̄j . (5)

Meanwhile, to guarantee that all active tasks at time t can be

completed by their deadlines, the SoC B(t) has to achieve

a minimum level given by

B(t) ≥
∑

j:dj≤t

Ej +
∑

j:aj≤t<dj

max
{
Ej − (dj − t

)
L̄j , 0
}
,

where we have accounted for the energy delivered for all

finished tasks up until time t. Note that the lower bound

implies that each active task j will be allocated the maximum

processing power from now on and can receive at most (dj−
t)L̄j amount of energy. Similarly, we can derive an upper

bound for the SoC B(t) as

B(t) ≤
∑

j:dj≤t

Ej +
∑

j:aj≤t<dj

min
{
Ej ,
(
t− aj
)
L̄j
}
.

From above, the parameters of this aggregated virtual battery

are available with a dissipation rate α = 1.

Remark 1. As shown from the two virtual battery examples,
the parameterization is likely time-varying and uncertain,
depending on random ambient temperatures and computing
task arrivals, etc. Therefore, managing such dynamic virtual
batteries from flexibility aggregation is more challenging
than operating real batteries.

Note that multiple batteries can be readily aggregated

into one [12]. Without loss of generality, we consider only

one virtual battery with no dissipation (α = 1) in this

work for ease of presentation. The analysis and results also

generalize to the concurrent management of multiple virtual

batteries. Specifically, in our setting, electricity from both

local renewable generation and the utility grid can be used to

charge the virtual battery. We use Rb(t) and Gb(t) to denote

respectively the electricity from the two sources. Besides,

we define Be(t) to represent the energy withdrawal from the

virtual battery to serve the non-controllable demand in the

data center. Therefore, the characterization (1) of the virtual

battery can be explicitly written as

0 ≤ Gb(t) +Rb(t) ≤ Bchar(t), ∀t, (6a)

Gb(t) ≥ 0, Rb(t) ≥ 0, ∀t, (6b)

0 ≤ Be(t) ≤ Bdis(t), ∀t, (6c)

B(t+ 1) = B(t) +Gb(t) +Rb(t)−Be(t), ∀t, (6d)

Bmin(t) ≤ B(t) ≤ Bmax(t), ∀t. (6e)

Furthermore, simultaneous charge and discharge are not

allowed:

Gb(t) +Rb(t) > 0 ⊥ Be(t) > 0 (7)

B. Problem Formulation

Suppose the data center is equipped with local renewable

generators, such as roof-top solar panels, which can provide

an R(t) amount of renewable energy at time t. R(t) is

random in real time, but will always be upper bounded by

solar panels’ inverter capacity Rmax, i.e.,

0 ≤ R(t) ≤ Rmax.

The electricity generated from renewables is divided into

three parts: Re(t) is directly supplied to the data center to

meet its (non-controllable ) demand; Rb(t) can be stored

in the virtual battery whenever necessary; the rest is just

abandoned. This is captured by

0 ≤ Re(t) +Rb(t) ≤ R(t), ∀t, (8a)

Re(t) ≥ 0, ∀t. (8b)

Denote the (non-controllable) demand of the data center

at time t as E(t). In total, it is satisfied by a combination

of electricity supply from the local renewable generation, the

virtual battery, and the utility grid. We assume the utility grid

is able to offer any amount of electricity that the data center

requests to purchase, which yields

E(t) = Re(t) +Be(t) +Ge(t), ∀t, (9)

where Ge(t) denotes the supply from the utility grid that

directly serves the energy demand. Meanwhile, the data

center can also purchase electricity Gb(t) from the utility

grid to store in the virtual battery. Note that selling electricity

back to the utility grid is temporarily not allowed, i.e.,

Ge(t) ≥ 0, ∀t. (10)

Let P (t) ≥ 0 denote the unit price of electricity at time t.
Then the corresponding energy cost for electricity purchase

is

C(t) = P (t)[Ge(t) +Gb(t)]. (11)

The offline problem of the data center over a long (infinite)

time horizon can be formulated to minimize the time-average

3

Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 13:28:21 UTC from IEEE Xplore.  Restrictions apply. 



2173

energy cost while satisfying the energy demand at each

time t:

P1: min lim
T→∞

1

T

T−1∑
t=0

E{C(t)} (12)

s.t. (6),(7),(8),(9),(10)

However, in practice, the electricity prices, renewable

generation, and energy demand of data centers are all

random but will be sequentially revealed online. Upon

observing the current price P (t), renewable availabil-

ity R(t), and energy demand E(t), the data center has

to make an irrevocable electricity purchase decision on

{Re(t), Rb(t), Ge(t), Gb(t), Be(t)} in real time without

knowing exactly these future information.

III. ONLINE ALGORITHM

A. Problem Relaxation

In P1, the energy demand E(t), electricity prices P (t), and

renewable availability R(t) are not known in advance until

time t. Therefore, solving the problem directly is impractical.

Meanwhile, we can observe that the decision variables Gb(t),
Ge(t), and Be(t) are subject to constraints imposed by the

battery’s SoC at each time t, which results in the problem

being temporally coupled and challenging to resolve. To

address the above issues, we first relax it to ensure constraint

satisfaction over the long term. Define the time-average rate

of charge and discharge as follows:

Gb = lim
T→∞

1

T

T−1∑
t=0

Gb(t) (13)

Rb = lim
T→∞

1

T

T−1∑
t=0

Rb(t) (14)

Be = lim
T→∞

1

T

T−1∑
t=0

Be(t). (15)

Therefore, we have Gb + Rb = Be. This is because if our

charging/discharging consistently satisfies the constraints of

the original problem, it will also satisfy such equations in

the long term. We first relax the problem P1 to obtain the

problem P2:

P2: min lim
T→∞

1

T

T−1∑
t=0

E{C(t)} (16)

s.t. (6a),(6b),(6c),(7),(8),(9),(10)

Gb +Rb = Be. (17)

It is clear that P2 is the optimization problem obtained by

relaxing the constraints of P1. Therefore, any solution satis-

fying the constraints of P1 is feasible for P2. The optimal

value of P2 is guaranteed to be less than that of P1. Denote

the optimal objective value of P1 as Y OPT and the optimal

objective value of P2 as Y REL, that is Y REL ≤ Y OPT .

Then we employ the Lyapunov optimization technique [17]

to transform the offline optimization problem into an online

optimization problem that is independent of the statistical

properties of E(t), R(t), and P (t), thereby obtaining an

approximate solution to the original problem.

B. Decoupling and Real-Time Decision via Lyapunov Opti-
mization

We employ the idea of Lyapunov optimization to enable

real-time decisions. We define a virtual queue based on the

SoC B(t) of the virtual battery as

Q(t) = B(t)− B̄min − V Pmax −Bdis, (18)

which is essentially a constant shift from B(t) and where

Bdis := maxt Bdis(t), B̄min := maxt Bmin(t) and

Pmax := maxt P (t). Therefore, the virtual queue involves

according to

Q(t+ 1) = Q(t) +Gb(t) +Rb(t)−Be(t). (19)

The virtual queue can decompose the long-term constraints

in problem P2 into each time t, thus removing the long-term

constraints in P2. By setting specific relationships and weight

parameter V , we can ensure that real-time decisions based

on Lyapunov optimization satisfy all constraints of P1.

Before introducing our online algorithm, we design the

Lyapunov function as L(Q(t)) = 1
2Q

2(t) and the conditional

one-slot Lyapunov drift as follows:

Δ(Q(t)) = E{L(Q(t+ 1))− L(Q(t))|Q(t)}. (20)

Note that taking square of both sides of (19) yields

Q2(t+ 1) = Q2(t) + [Gb(t) +Rb(t)−Be(t)]
2

+2Q(t)[Gb(t) +Rb(t)−Be(t)].

Due to (6a), (6c) and (7), we have

[Gb(t) +Rb(t)−Be(t)]
2

=[Gb(t) +Rb(t)]
2 +Be(t)

2 − 2[Gb(t) +Rb(t)]Be(t)

≤[Gb(t) +Rb(t)]
2 +Be(t)

2

≤max{B2
char(t), B

2
dis(t)}

≤max{B2
char, B

2
dis}

with Bchar := maxt Bchar(t) and Bdis := maxt Bdis(t).
Define B := 1

2 max{B2
char, B

2
dis}. We can further have

1

2
(Q2(t+ 1)−Q2(t)) ≤ B +Q(t)[Gb(t) +Rb(t)−Be(t)].

Taking the conditional expectation of both sides gives the

following bound on the one-step Lyapunov drift:

Δ(Q(t)) ≤ B+Q(t)E{Gb(t)+Rb(t)−Be(t)|Q(t)}. (21)

By minimizing the Lyapunov drift plus the energy cost,

we can lower the energy cost and simultaneously ensure the

stability of the virtual queue. Instead of directly controlling

the exact Lyapunov drift, we take a conservative alternative

and limit its upper bound, i.e., the right-hand side of (21).

To this end, we develop an online algorithm that decides

4
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{Re(t), Rb(t), Ge(t), Gb(t), Be(t)} in real time based on the

observation of {R(t), P (t), E(t)} by solving

P3: min[Q(t) + V P (t)]Gb(t) +Q(t)Rb(t)

− [Q(t) + V P (t)]Be(t)− V P (t)Re(t).
(22)

s.t. (6a),(6b),(6c),(7),(8),(9),(10)

where the objective reflects the weighted sum of the upper

bound on the Lyapunov drift and the energy cost (with a

constant shift). We summarize the proposed online algorithm

in Algorithm 1:

Algorithm 1 Online Algorithm

At each time t:
1. Observe R(t), P (t), E(t) and Q(t);
2. Determine (R∗

e(t), R
∗
b(t), G

∗
e(t), G

∗
b(t), B

∗
e (t)) by solving

P3;

3. Implement the decision and update B(t+1) following the

dynamics (6d).

C. Performance Analysis

Before summarizing the properties of the algorithm, we

first analyze the optimal solution of P3.

Lemma 1. The optimal solution to P3 satisfies the following:
1) If Q(t) + V P (t) ≤ 0 holds, we have B∗

e (t) = 0.
2) If Q(t) > 0 holds, we have G∗

b(t) = 0 and R∗
b(t) = 0.

See Appendix A in [18] for the proof. Lemma 1 con-

tributes to more insights into Algorithm 1 as follows.

Theorem 1. If R(t), E(t), P (t), ∀t, are i.i.d., Algorithm 1
achieves a time-average energy cost more than the optimum
Y OPT by at most a constant B/V , i.e.,

lim
T→∞

1

T

T−1∑
t=0

E{C(t)} ≤ Y OPT +B/V.

Moreover, given Bchar := maxt Bchar(t) and B̄max :=
mint Bmax(t), if 0 < V ≤ Vmax holds with

Vmax :=
B̄max − B̄min −Bdis −Bchar

Pmax
, (23)

it is guaranteed that

Bmin(t) ≤ B(t) ≤ Bmax(t), ∀t,
holds.

See Appendix B in [18] for the proof.

Remark 2. In Theorem 1, as V increases, the long-term
average energy cost will get closer to the optimal value of the
original problem P1. However, there exists an upper bound
for the choice of V in order to guarantee the feasibility
of virtual battery operation. It can always be achieved by
setting a sufficiently small V . The tradeoff implies that a
good estimate of Vmax is necessary. In practice, even if
we set V > Vmax, we can project any infeasible real-time
decision onto the feasible region of the virtual battery given
the latest observation.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed algorithm through

simulation experiments. We consider a total time duration

of 30 days, where each time t corresponds to 1 hour. The

electricity prices P (t), fluctuate randomly within the range

[0.5, 1.5]. The electricity price is in the unit of $/kWh.

The hourly energy requirement E(t) fluctuates within the

interval [10000, 20000] in terms of kWh. The renewable

energy generation R(t) fluctuates hourly within the range of

[0, 3000] kWh. The maximum capacity Bmax(t) of the ag-

gregated virtual battery fluctuates randomly within the range

of 3000 kWh to 4000 kWh, while its minimum capacity

Bmin(t) varies randomly within the range of 1000 kWh

to 2000 kWh. The charging rate Bchar(t) and discharging

rate Bdis(t) can fluctuate arbitrarily between 100 kW and

200 kW. We assume that we know B̄max = 3000, B̄min =
2000, Bchar = 200, Bdis = 200 in advance. Hence we have

Vmax = 400.

Impact of parameter V . First, we observe how the

parameter V influences the energy cost reduction. It is seen

in Fig.2 that the average cost decreases with increasing

V . The results align with our algorithmic performance

demonstrated in Theorem 1. As intuitively expected, our

algorithm discharges from the virtual battery during periods

of high electricity prices and charges it during periods of

low electricity prices. Additionally, it stores excess renewable

energy for subsequent use when electricity prices become

excessively high.

Fig. 2: Average energy cost with different V

Variation of virtual battery SoC. Then, we observe

whether the virtual battery always remains between its upper

and lower bounds under our algorithm, and under what

circumstances it may exceed these bounds. When we know

in advance B̄max, B̄min, Bdis, Bchar, and Pmax, we can

compute the upper limit of V , and set V to its maximum

attainable value. In this scenario, the virtual battery remains

within its SoC bounds at all times. However, without prior

knowledge of these parameters, we may not accurately

determine the value of Vmax. When we do not know the

upper bound of V , inappropriate selection of V may result

in the SoC of the virtual battery exceeding its bounds. As

illustrated in Fig.3, when we set V = 10 and V = 300, that

is V ≤ Vmax, we observe that the SoC of the virtual battery

5
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remains within its bounds. However, when V = 800 > Vmax

it can be observed that the SoC of the virtual battery may

exceed its limits. Therefore, by setting an appropriate V , we

can achieve bounded loss compared with the offline optimal

cost.

Fig. 3: Variation of SoC under different settings of V

V. CONCLUSIONS

In this work, we propose a two-layer hierarchy where

the lower layer consists of the operation of all electrical

equipment in the data center and the upper layer determines

the procurement and dispatch of electricity to minimize the

long-term time-averaged energy cost. We further design an

online algorithm based on Lyapunov optimization which can

assist data centers in purchasing electricity from the grid

under the uncertainties and fluctuations in energy prices, re-

newable energy availability, and battery specifications. With

the increasing parameter V , our algorithm can achieve a cost

that is close to the offline optimal. Simulation results validate

the theoretical analysis and show the effectiveness of our

algorithm in reducing the long-term cost. In future work,

we will consider a more realistic virtual battery model with

dissipation.
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