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Abstract— As a critical component of modern infrastructure,
data centers account for a huge amount of power consumption
and greenhouse gas emission. This paper studies the electricity
purchase strategy for a data center to lower its energy cost
while integrating local renewable generation under uncertainty.
To facilitate efficient and scalable decision-making, we propose
a two-layer hierarchy where the lower layer consists of the
operation of all electrical equipment in the data center and
the upper layer determines the procurement and dispatch of
electricity. At the lower layer, instead of device-level scheduling
in real time, we propose to exploit the inherent flexibility in
demand, such as thermostatically controlled loads and flexible
computing tasks, and aggregate them into virtual batteries. By
this means, the upper-layer decision only needs to take into
account these virtual batteries, the size of which is generally
small and independent of the data center scale. We further
propose an online algorithm based on Lyapunov optimization
to purchase electricity from the grid with a manageable energy
cost, even though the prices, renewable availability, and battery
specifications are uncertain and dynamic. In particular, we
show that, under mild conditions, our algorithm can achieve
bounded loss compared with the offline optimal cost, while
strictly respecting battery operational constraints. Extensive
simulation studies validate the theoretical analysis and illustrate
the tradeoff between optimality and conservativeness.

I. INTRODUCTION

Data centers, serving as the crucial infrastructure within
the contemporary digital economy, are experiencing a rapid
increase in energy demand owing to their continuously
expanding scale. As large energy consumers, data centers
spend nearly 30% to 50% percent of their operating costs
on energy bills, where a significant proportion of the elec-
tricity consumed originates from the electricity spot market.
Due to the huge energy consumption of data centers, a
1% improvement in power efficiency would save millions
of dollars for the cloud service providers, which has led
to growing attention on minimizing energy costs through
optimizing spot market transactions. To address this issue,
one feasible option is to use the flexibility of data centers’
power equipments to reduce energy costs and absorb green
power generation. Currently, data centers are commonly
equipped with renewable energy generation, yet their energy
supply is highly influenced by climatic conditions, rendering
it intermittent and difficult to predict [1], [2]. Furthermore,
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electricity prices in the spot market fluctuate in real time,
and the demand-side flexibility of data centers has great
randomness. Faced with the randomness of flexible loads,
volatility of electricity prices, and intermittency of renewable
energy, minimizing the data center in spot market energy
cost in the absence of future statistical knowledge poses a
challenging problem.

There have been numerous related works addressing the
optimization of electricity procurement for data centers.
Some existing works use storage and price changes to
address time-dimensional shifts in energy demand [3], [4].
Some works formulate these problems as a stochastic op-
timization problem and introduce Lyapunov optimization
technologies to make real-time decisions. [5] and [6] take
the uncertainty of electricity price and load into considera-
tion during optimization, a two-time scale power market is
considered in [7], and Zhang et al. investigate the problem
of energy management for data centers with renewable
resources and energy storages to minimize electricity cost by
leveraging the diversity of these system states [8]. However,
these works either fail to consider energy storage or only
consider real battery-based energy storage. In other words,
they do not aggregate other flexible loads and energy storage
available in data centers to form virtual batteries, resulting
in under-utilization of the flexibility of data center loads.

In reality, a data center comprises various heterogeneous
classes of flexible loads. We can integrate these loads in
the data center into system-level operation and control them
by constructing a simple and user-friendly model. Among
various modeling methods, the virtual battery model gains
its popularity due to its simple and compact form. It aims
to quantify the aggregate flexibility while considering the
physical constraints of each individual load. Specifically,
the virtual battery model constitutes a scalar linear system,
akin to a simplified representation of battery dynamics, with
parameters denoting charge and discharge power constraints,
and energy capacity limits. Studies have demonstrated the
ability of virtual battery models to effectively capture the
aggregate flexibility of diverse classes of flexible loads. [9],
[10], and [11] model the aggregate flexibility of deferrable
tasks and Thermostatically Controlled Loads (TCLs), respec-
tively. Hao et al. first consider four types of flexible loads:
TCLs, distributed energy storages, residential pool pumps,
and electric vehicles, and for each type of load, they derive
a closed-form approximation for the aggregate flexibility set
based on the individual load parameters [12]. [13] further
considers the heterogeneous arrival time of deferrable loads,
and also tries to get the close-form battery approximation.
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In [14] and [15], the authors simplify the problem of identi-
fying battery parameters to a polynomial complexity, which
further contributes to the application of the virtual battery
in the distributed energy resources’ flexibility management.
Therefore, aggregating the individual flexible loads of the
data center as a virtual battery can significantly improve the
rationality of electricity purchase and reduce energy costs.

The objective of this paper is to devise an online strategy
for managing the power purchasing policy of data centers
that integrate time-varying virtual batteries and renewable
energy resources, with the aim of minimizing long-term costs
while meeting the energy demand. By leveraging Lyapunov
optimization techniques, we develop an online algorithm
to address this problem. We demonstrate that the proposed
algorithm achieves close-to-optimal performance even in the
presence of time-varying parameters of the virtual battery,
without requiring prior knowledge of statistics. The cost
incurred is at most higher than the optimal algorithm by
O(1/V ), where V is a controllable parameter balancing the
trade-off between energy cost and virtual battery capacity.
Furthermore, we provide explicit solutions for control actions
under current system dynamics, ensuring the efficiency of
our algorithm. Finally, the simulation results validate the
effectiveness of the proposed algorithm.

II. SYSTEM MODEL

Consider the system operation of a data center in a
discrete-time horizon t ∈ {0, 1, 2,...}, which uses electricity
power from a utility grid and local renewable generation to
meet its energy demand. We divide the overall demand into
two categories: one is controllable, e.g., TCLs of cooling
systems and flexible computing tasks of IT equipment, and
the other is non-controllable including necessary power to
support basic services, uninterruptible computing tasks with
priority, etc. We propose to aggregate controllable demand
into virtual batteries such that the flexibility can be exploited
in a computationally efficient way to manage electricity
purchase. A schematic diagram of the system model is
given in Figure 1. We develop the detailed model for each
component of the system below.

Fig. 1: Electricity flows in a data center with virtual batteries.

A. Virtual Battery

In this subsection, we use TCLs and flexible computing
tasks, the two most common loads in the data center,
as examples to show how virtual batteries can be aggre-
gated. In particular, a virtual battery is specified by a tu-
ple of parameters (Bchar(t), Bdis(t), Bmin(t), Bmax(t), α),
where Bchar(t)/Bdis(t) is the charge/discharge rate limit,
Bmin(t)/Bmax(t) is the lower/upper bound of battery capac-
ity, and α is the dissipation rate. Given such a specification, a
virtual battery is modeled by two variables - the battery State-
of-Charge (SoC) B(t) and the energy injection/withdrawal
U(t) - subject to the following:

−Bdis(t) ≤ U(t) ≤ Bchar(t), ∀t, (1a)

B(t+ 1) = αB(t) + U(t), ∀t, (1b)

Bmin(t) ≤ B(t) ≤ Bmax(t), ∀t. (1c)

TCL: The role of a TCL, mainly a cooling system, of the
data center is to maintain required room temperatures for IT
equipment. Such a requirement is typically captured by a set
of thermodynamics equations and operational constraints:

θ(t+ 1) = αθ(t) + (1− α) (θa(t) + cr(t)− bp(t)) , ∀t,
(2a)

θr −∆ ≤ θ(t) ≤ θr +∆, ∀t, (2b)

0 ≤ p(t) ≤ pm, ∀t. (2c)

Here the variables are the room temperature θ(t) and the
operating power p(t) of the TCL. The external inputs include
the operating power of IT devices in the room r(t) and
the ambient temperature θa(t). The parameters include the
room temperature setpoint θr with a tolerance gap ∆, the
maximum TCL power pm, the coefficient c that reflects the
temperature rise per unit of IT power, and the coefficient
b that reflects the temperature drop per unit of the TCL
power [12], [16].

Note that there exists a nominal value po(t) for p(t) that
can set the immediate room temperature to the setpoint θr,
given by

p0(t) =
θa(t) + cr(t)− θr

b
.

By defining

B(t) :=
θr − θ(t)

(1− α)b
, U(t) := p(t)− po(t),

we obtain

−p0(t) ≤ U(t) ≤ pm − p0(t), ∀t, (3a)

B(t+ 1) = αB(t) + U(t), ∀t, (3b)

− ∆

(1− α)b
≤ B(t) ≤ ∆

(1− α)b
, ∀t. (3c)

It is obvious from (3) that the flexibility of a TCL can be
represented as a virtual battery, parameterized by(

pm − po(t), po(t), − ∆

(1− α)b
,

∆

(1− α)b
, α

)
.
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Delay-Tolerant Computing Task: A lot of SQL or machine
learning tasks are flexible with the processing schedule,
as long as they are completed before a specified deadline.
Consider a set of such tasks, each (task j) parameterized by
(aj , dj , L̄j , Ej), denoting the arrival time, the deadline, the
power consumption corresponding to the maximum process-
ing speed, and the total energy required to complete the task,
respectively. Let Lj(t) be the allocated power to task j at
time t. Then the task can be characterized as

0 ≤ Lj(t) ≤ L̄j , ∀t ∈ [aj , dj) (4a)

Lj(t) = 0, ∀t /∈ [aj , dj) (4b)∑
t

Lj(t) = Ej . (4c)

The aggregate flexibility of this set of tasks can also be
approximated as a virtual battery [12]. Define in this case

B(t) :=
∑
τ<t

∑
j

Lj(t), U(t) :=
∑
j

Lj(t).

Obviously, U(t) cannot exceed the sum of the maximum
power consumption of all active tasks, i.e.,

0 ≤ U(t) ≤
∑

j:aj≤t<dj

L̄j . (5)

Meanwhile, to guarantee that all active tasks at time t can be
completed by their deadlines, the SoC B(t) has to achieve
a minimum level given by

B(t) ≥
∑

j:dj≤t

Ej +
∑

j:aj≤t<dj

max
{
Ej −

(
dj − t

)
L̄j , 0

}
,

where we have accounted for the energy delivered for all
finished tasks up until time t. Note that the lower bound
implies that each active task j will be allocated the maximum
processing power from now on and can receive at most (dj−
t)L̄j amount of energy. Similarly, we can derive an upper
bound for the SoC B(t) as

B(t) ≤
∑

j:dj≤t

Ej +
∑

j:aj≤t<dj

min
{
Ej ,

(
t− aj

)
L̄j

}
.

From above, the parameters of this aggregated virtual battery
are available with a dissipation rate α = 1.

Remark 1. As shown from the two virtual battery examples,
the parameterization is likely time-varying and uncertain,
depending on random ambient temperatures and computing
task arrivals, etc. Therefore, managing such dynamic virtual
batteries from flexibility aggregation is more challenging
than operating real batteries.

Note that multiple batteries can be readily aggregated
into one [12]. Without loss of generality, we consider only
one virtual battery with no dissipation (α = 1) in this
work for ease of presentation. The analysis and results also
generalize to the concurrent management of multiple virtual
batteries. Specifically, in our setting, electricity from both
local renewable generation and the utility grid can be used to
charge the virtual battery. We use Rb(t) and Gb(t) to denote

respectively the electricity from the two sources. Besides,
we define Be(t) to represent the energy withdrawal from the
virtual battery to serve the non-controllable demand in the
data center. Therefore, the characterization (1) of the virtual
battery can be explicitly written as

0 ≤ Gb(t) +Rb(t) ≤ Bchar(t), ∀t, (6a)

Gb(t) ≥ 0, Rb(t) ≥ 0, ∀t, (6b)

0 ≤ Be(t) ≤ Bdis(t), ∀t, (6c)

B(t+ 1) = B(t) +Gb(t) +Rb(t)−Be(t), ∀t, (6d)

Bmin(t) ≤ B(t) ≤ Bmax(t), ∀t. (6e)

Furthermore, simultaneous charge and discharge are not
allowed:

Gb(t) +Rb(t) > 0 ⊥ Be(t) > 0 (7)

B. Problem Formulation

Suppose the data center is equipped with local renewable
generators, such as roof-top solar panels, which can provide
an R(t) amount of renewable energy at time t. R(t) is
random in real time, but will always be upper bounded by
solar panels’ inverter capacity Rmax, i.e.,

0 ≤ R(t) ≤ Rmax.

The electricity generated from renewables is divided into
three parts: Re(t) is directly supplied to the data center to
meet its (non-controllable ) demand; Rb(t) can be stored
in the virtual battery whenever necessary; the rest is just
abandoned. This is captured by

0 ≤ Re(t) +Rb(t) ≤ R(t), ∀t, (8a)

Re(t) ≥ 0, ∀t. (8b)

Denote the (non-controllable) demand of the data center
at time t as E(t). In total, it is satisfied by a combination
of electricity supply from the local renewable generation, the
virtual battery, and the utility grid. We assume the utility grid
is able to offer any amount of electricity that the data center
requests to purchase, which yields

E(t) = Re(t) +Be(t) +Ge(t), ∀t, (9)

where Ge(t) denotes the supply from the utility grid that
directly serves the energy demand. Meanwhile, the data
center can also purchase electricity Gb(t) from the utility
grid to store in the virtual battery. Note that selling electricity
back to the utility grid is temporarily not allowed, i.e.,

Ge(t) ≥ 0, ∀t. (10)

Let P (t) ≥ 0 denote the unit price of electricity at time t.
Then the corresponding energy cost for electricity purchase
is

C(t) = P (t)[Ge(t) +Gb(t)]. (11)

The offline problem of the data center over a long (infinite)
time horizon can be formulated to minimize the time-average
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energy cost while satisfying the energy demand at each
time t:

P1: min lim
T→∞

1

T

T−1∑
t=0

E{C(t)} (12)

s.t. (6),(7),(8),(9),(10)

However, in practice, the electricity prices, renewable
generation, and energy demand of data centers are all
random but will be sequentially revealed online. Upon
observing the current price P (t), renewable availabil-
ity R(t), and energy demand E(t), the data center has
to make an irrevocable electricity purchase decision on
{Re(t), Rb(t), Ge(t), Gb(t), Be(t)} in real time without
knowing exactly these future information.

III. ONLINE ALGORITHM

A. Problem Relaxation

In P1, the energy demand E(t), electricity prices P (t), and
renewable availability R(t) are not known in advance until
time t. Therefore, solving the problem directly is impractical.
Meanwhile, we can observe that the decision variables Gb(t),
Ge(t), and Be(t) are subject to constraints imposed by the
battery’s SoC at each time t, which results in the problem
being temporally coupled and challenging to resolve. To
address the above issues, we first relax it to ensure constraint
satisfaction over the long term. Define the time-average rate
of charge and discharge as follows:

Gb = lim
T→∞

1

T

T−1∑
t=0

Gb(t) (13)

Rb = lim
T→∞

1

T

T−1∑
t=0

Rb(t) (14)

Be = lim
T→∞

1

T

T−1∑
t=0

Be(t). (15)

Therefore, we have Gb + Rb = Be. This is because if our
charging/discharging consistently satisfies the constraints of
the original problem, it will also satisfy such equations in
the long term. We first relax the problem P1 to obtain the
problem P2:

P2: min lim
T→∞

1

T

T−1∑
t=0

E{C(t)} (16)

s.t. (6a),(6b),(6c),(7),(8),(9),(10)

Gb +Rb = Be. (17)

It is clear that P2 is the optimization problem obtained by
relaxing the constraints of P1. Therefore, any solution satis-
fying the constraints of P1 is feasible for P2. The optimal
value of P2 is guaranteed to be less than that of P1. Denote
the optimal objective value of P1 as Y OPT and the optimal
objective value of P2 as Y REL, that is Y REL ≤ Y OPT .
Then we employ the Lyapunov optimization technique [17]
to transform the offline optimization problem into an online

optimization problem that is independent of the statistical
properties of E(t), R(t), and P (t), thereby obtaining an
approximate solution to the original problem.

B. Decoupling and Real-Time Decision via Lyapunov Opti-
mization

We employ the idea of Lyapunov optimization to enable
real-time decisions. We define a virtual queue based on the
SoC B(t) of the virtual battery as

Q(t) = B(t)− B̄min − V Pmax −Bdis, (18)

which is essentially a constant shift from B(t) and where
Bdis := maxt Bdis(t), B̄min := maxt Bmin(t) and
Pmax := maxt P (t). Therefore, the virtual queue involves
according to

Q(t+ 1) = Q(t) +Gb(t) +Rb(t)−Be(t). (19)

The virtual queue can decompose the long-term constraints
in problem P2 into each time t, thus removing the long-term
constraints in P2. By setting specific relationships and weight
parameter V , we can ensure that real-time decisions based
on Lyapunov optimization satisfy all constraints of P1.

Before introducing our online algorithm, we design the
Lyapunov function as L(Q(t)) = 1

2Q
2(t) and the conditional

one-slot Lyapunov drift as follows:

∆(Q(t)) = E{L(Q(t+ 1))− L(Q(t))|Q(t)}. (20)

Note that taking square of both sides of (19) yields

Q2(t+ 1) = Q2(t) + [Gb(t) +Rb(t)−Be(t)]
2

+2Q(t)[Gb(t) +Rb(t)−Be(t)].

Due to (6a), (6c) and (7), we have

[Gb(t) +Rb(t)−Be(t)]
2

=[Gb(t) +Rb(t)]
2 +Be(t)

2 − 2[Gb(t) +Rb(t)]Be(t)

≤[Gb(t) +Rb(t)]
2 +Be(t)

2

≤max{B2
char(t), B

2
dis(t)}

≤max{B2
char, B

2
dis}

with Bchar := maxt Bchar(t) and Bdis := maxt Bdis(t).
Define B := 1

2 max{B2
char, B

2
dis}. We can further have

1

2
(Q2(t+ 1)−Q2(t)) ≤ B +Q(t)[Gb(t) +Rb(t)−Be(t)].

Taking the conditional expectation of both sides gives the
following bound on the one-step Lyapunov drift:

∆(Q(t)) ≤ B+Q(t)E{Gb(t)+Rb(t)−Be(t)|Q(t)}. (21)

By minimizing the Lyapunov drift plus the energy cost,
we can lower the energy cost and simultaneously ensure the
stability of the virtual queue. Instead of directly controlling
the exact Lyapunov drift, we take a conservative alternative
and limit its upper bound, i.e., the right-hand side of (21).
To this end, we develop an online algorithm that decides
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{Re(t), Rb(t), Ge(t), Gb(t), Be(t)} in real time based on the
observation of {R(t), P (t), E(t)} by solving

P3: min[Q(t) + V P (t)]Gb(t) +Q(t)Rb(t)

− [Q(t) + V P (t)]Be(t)− V P (t)Re(t).
(22)

s.t. (6a),(6b),(6c),(7),(8),(9),(10)

where the objective reflects the weighted sum of the upper
bound on the Lyapunov drift and the energy cost (with a
constant shift). We summarize the proposed online algorithm
in Algorithm 1:

Algorithm 1 Online Algorithm
At each time t:
1. Observe R(t), P (t), E(t) and Q(t);
2. Determine (R∗

e(t), R
∗
b(t), G

∗
e(t), G

∗
b(t), B

∗
e (t)) by solving

P3;
3. Implement the decision and update B(t+1) following the
dynamics (6d).

C. Performance Analysis

Before summarizing the properties of the algorithm, we
first analyze the optimal solution of P3.

Lemma 1. The optimal solution to P3 satisfies the following:
1) If Q(t) + V P (t) ≤ 0 holds, we have B∗

e (t) = 0.
2) If Q(t) > 0 holds, we have G∗

b(t) = 0 and R∗
b(t) = 0.

See Appendix A for the proof. Lemma 1 contributes to
more insights into Algorithm 1 as follows.

Theorem 1. If R(t), E(t), P (t), ∀t, are i.i.d., Algorithm 1
achieves a time-average energy cost more than the optimum
Y OPT by at most a constant B/V , i.e.,

lim
T→∞

1

T

T−1∑
t=0

E{C(t)} ≤ Y OPT +B/V.

Moreover, given Bchar := maxt Bchar(t) and B̄max :=
mint Bmax(t), if 0 < V ≤ Vmax holds with

Vmax :=
B̄max − B̄min −Bdis −Bchar

Pmax
, (23)

it is guaranteed that

Bmin(t) ≤ B(t) ≤ Bmax(t), ∀t,

holds.

See Appendix B for the proof.

Remark 2. In Theorem 1, as V increases, the long-term
average energy cost will get closer to the optimal value of the
original problem P1. However, there exists an upper bound
for the choice of V in order to guarantee the feasibility
of virtual battery operation. It can always be achieved by
setting a sufficiently small V . The tradeoff implies that a
good estimate of Vmax is necessary. In practice, even if
we set V > Vmax, we can project any infeasible real-time
decision onto the feasible region of the virtual battery given
the latest observation.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed algorithm through
simulation experiments. We consider a total time duration
of 30 days, where each time t corresponds to 1 hour. The
electricity prices P (t), fluctuate randomly within the range
[0.5, 1.5]. The electricity price is in the unit of $/kWh.
The hourly energy requirement E(t) fluctuates within the
interval [10000, 20000] in terms of kWh. The renewable
energy generation R(t) fluctuates hourly within the range of
[0, 3000] kWh. The maximum capacity Bmax(t) of the ag-
gregated virtual battery fluctuates randomly within the range
of 3000 kWh to 4000 kWh, while its minimum capacity
Bmin(t) varies randomly within the range of 1000 kWh
to 2000 kWh. The charging rate Bchar(t) and discharging
rate Bdis(t) can fluctuate arbitrarily between 100 kW and
200 kW. We assume that we know B̄max = 3000, B̄min =
2000, Bchar = 200, Bdis = 200 in advance. Hence we have
Vmax = 400.

Impact of parameter V . First, we observe how the
parameter V influences the energy cost reduction. It is seen
in Fig.2 that the average cost decreases with increasing
V . The results align with our algorithmic performance
demonstrated in Theorem 1. As intuitively expected, our
algorithm discharges from the virtual battery during periods
of high electricity prices and charges it during periods of
low electricity prices. Additionally, it stores excess renewable
energy for subsequent use when electricity prices become
excessively high.

Fig. 2: Average energy cost with different V

Variation of virtual battery SoC. Then, we observe
whether the virtual battery always remains between its upper
and lower bounds under our algorithm, and under what
circumstances it may exceed these bounds. When we know
in advance B̄max, B̄min, Bdis, Bchar, and Pmax, we can
compute the upper limit of V , and set V to its maximum
attainable value. In this scenario, the virtual battery remains
within its SoC bounds at all times. However, without prior
knowledge of these parameters, we may not accurately
determine the value of Vmax. When we do not know the
upper bound of V , inappropriate selection of V may result
in the SoC of the virtual battery exceeding its bounds. As
illustrated in Fig.3, when we set V = 10 and V = 300, that
is V ≤ Vmax, we observe that the SoC of the virtual battery
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remains within its bounds. However, when V = 800 > Vmax

it can be observed that the SoC of the virtual battery may
exceed its limits. Therefore, by setting an appropriate V , we
can achieve bounded loss compared with the offline optimal
cost.

Fig. 3: Variation of SoC under different settings of V

V. CONCLUSIONS

In this work, we propose a two-layer hierarchy where
the lower layer consists of the operation of all electrical
equipment in the data center and the upper layer determines
the procurement and dispatch of electricity to minimize the
long-term time-averaged energy cost. We further design an
online algorithm based on Lyapunov optimization which can
assist data centers in purchasing electricity from the grid
under the uncertainties and fluctuations in energy prices, re-
newable energy availability, and battery specifications. With
the increasing parameter V , our algorithm can achieve a cost
that is close to the offline optimal. Simulation results validate
the theoretical analysis and show the effectiveness of our
algorithm in reducing the long-term cost. In future work,
we will consider a more realistic virtual battery model with
dissipation.
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APPENDIX

A. Proof of Lemma 1

In this part, we show the solution in some cases below:
1. For Q(t) < Q(t) + V P (t) ≤ 0: To minimize

the objective of P3, we strive to maximize the values of
Gb(t), Rb(t), and Re(t) while minimizing Be(t) as much as
possible. Since Q(t) ≤ −V P (t) and Q(t) < Q(t) + V P (t),
maximizing Rb(t) can further reduce the value of P3. Thus
in this case we can obtain:

Rb(t) = min{R(t), Bchar(t)}
Be(t) = 0

Re(t) = min{R(t)−Rb(t), E(t)−Be(t)}
Gb(t) = Bchar(t)−Rb(t)

Ge(t) = E(t)−Re(t)−Be(t).

2. For Q(t) ≤ 0 < Q(t) + V P (t): To minimize the
objective of P3, we need the solution is to set Rb(t), Be(t)
and Re(t) as large as possible and Gb(t) as small as possible.
Since Q(t) + V P (t) > 0 and Q(t) ≤ 0 , we can conclude
−V P (t) < Q(t) and −V P (t) ≤ −(Q(t) + V P (t)). This
means maximizing Re(t) in the can further reduce the
value of P3. Because the virtual battery cannot charge and
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discharge simultaneously, one possible solution when the
virtual battery discharges is:

Re(t) = min{R(t), E(t)}
Be(t) = min{Bdis(t), E(t)−Re(t)}
Rb(t) = 0

Gb(t) = 0

Ge(t) = E(t)−Re(t)−Be(t).

There exists another solution which is to keep the virtual
battery charging as follows:

Re(t) = min{R(t), E(t)}
Be(t) = 0

Rb(t) = min{R(t)−Re(t), Bchar(t)}
Gb(t) = 0

Ge(t) = E(t)−Re(t)−Be(t).

3. For 0 < Q(t) < Q(t) + V P (t): To minimize the
objective of P3, we need to make the values of Gb(t), Rb(t)
as small as possible, while maximizing Re(t) , Be(t) as
much as possible. Thus we can obtain the following:

Gb(t) = 0

Rb(t) = 0

Be(t) = min{Bdis(t), E(t)}
Re(t) = min{R(t)−Rb(t), E(t)−Be(t)}
Ge(t) = E(t)−Be(t)−Re(t).

B. Proof of Theorem 1

Before proving this part, we need to use the following
lemma.

Lemma 2. If the R(t), E(t), and P (t) are i.i.d. over time t,
then there exists a stationary, randomized policy that satisfies
the constraints (6a),(6b),(6c),(7),(8),(9),(10) and provides the
following guarantees:

E{(G∗
b(t) +R∗

b(t))} = E{B∗
e (t)} (24)

E{P (t)(G∗
b(t) +G∗

e(t))} = Y REL (25)

where the expectations above are with respect to the station-
ary distribution of {E(t), R(t), P (t)} and the randomized
control decisions.

This result has been proven in [18]. It is omitted here for
brevity.

Because ∆(Q(t)) ≤ B + Q(t)E{(Gb(t) + Rb(t)) −
Be(t)|Q(t)}, we have ∆(Q(t)) + V E{P (t)(Gb(t) +
Ge(t))|Q(t)} ≤ B+Q(t)E{(Gb(t)+Rb(t))−Be(t)|Q(t)}+
V E{P (t)(Gb(t) + Ge(t))|Q(t)}, we could see our online
algorithm is designed to minimize the right-hand side of
above inequality over all possible feasible control decisions.
This includes the optimal, stationary, randomized policy
given in Lemma 2. Therefore, we can obtain the following

inequality:

∆(Q(t)) + V E{P (t)(Gb(t) +Ge(t))|Q(t)}
≤B +Q(t)E{(G∗

b(t) +R∗
b(t))−B∗

e (t)|Q(t)}
+ V E{P (t)(G∗

b(t) +G∗
e(t))|Q(t)}

≤B + V Y REL ≤ B + V Y OPT .

(26)

By taking the expectation of both sides of (26) and summing
over t ∈ {0, 1, 2, ..., T − 1}, we can get

V

T−1∑
t=0

E{C(t)}

≤ TB + TV Y OPT − E{L(Q(T )}+ E{L(Q(0)},

(27)

where we have applied Law of Total Expectation. Then we
divide both sides by V · T . When T → ∞, owing to that
E{L(Q(T )} and E{L(Q(0)} are finite, we can get:

lim
1

T

T−1∑
t=0

E{C(t)} ≤ Y OPT +
B

V
. (28)

Next, we prove the feasibility of virtual battery operation
when V is properly chosen. For a specific t and B̄min ≤
B(t) ≤ B̄max, we have −V Pmax − Bdis ≤ Q(t) ≤
B̄max − B̄min − V Pmax − Bdis. Now assuming that the
time t complies with the aforementioned bounds, we need
to prove that it also holds for time t+ 1.

First suppose −V Pmax−Bdis ≤ Q(t) ≤ −V Pmax. In this
case, by the Lemma 1, it can be inferred that Be(t) = 0,
then

Q(t+ 1) ≥ −V Pmax −Bdis + [Gb(t) +Rb(t)]

−Be(t)

≥ −V Pmax −Bdis

Q(t+ 1) ≤ −V Pmax + [Gb(t) +Rb(t)]−Be(t)

≤ Bchar

≤ B̄max − B̄min −Bdis − V Pmax.

In the proof of the upper bound, we utilized 0 < V ≤ Vmax.
Second, suppose −V Pmax < Q(t) ≤ 0, then

Q(t+ 1) > −V Pmax + [Gb(t) +Rb(t)]−Be(t)

> −V Pmax −Be(t)

> −V Pmax −Bdis

Q(t+ 1) ≤ [Gb(t) +Rb(t)]−Be(t)

≤ Bchar

≤ B̄max − B̄min −Bdis − V Pmax.

In proving the upper bound, we also utilize 0 < V ≤ Vmax.
Finally, suppose 0 < Q(t) ≤ B̄max − B̄min − V Pmax −

Bdis. In this case, by the Lemma 1 we can infer Gb(t) = 0
and Rb(t) = 0, then

Q(t+ 1) > [Gb(t) +Rb(t)]−Be(t)

> −Bdis

> −V Pmax −Bdis
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Q(t+ 1) ≤ B̄max − B̄min −Bdis

− V Pmax + [Gb(t) +Rb(t)]−Be(t)

≤ B̄max − B̄min − V Pmax −Bdis.

Through the aforementioned induction, we have established
the upper and lower bounds of the Q(t).

Since Q(t) always remains between the upper and lower
bounds and Q(t) = B(t)− B̄min −V Pmax −Bdis, then we
have B(t)− B̄min−V Pmax−Bdis ≥ −V Pmax−Bdis and
B(t) − B̄min − V Pmax − Bdis ≤ Bmax

max − B̄min − Bdis −
V Pmax. Therefore in each t, we conclude the following
holds:

Bmin(t) ≤ B̄min ≤ B(t) ≤ B̄max ≤ Bmax(t).

Our algorithm satisfies the battery constraints at each time
t, thereby ensuring that all decisions are feasible and do not
violate constraints.
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