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Abstract:
The cost and stability, in terms of stable charging load, are the main concerns of a charging station (CS). To this end, an online

cost optimization algorithm is proposed by assuming that all electric vehicle (EV) users are selfless, so that they will report a real
demand to the CS. However, in reality, all EV users are rational and they want to complete the energy demand in the fastest time
and the lowest cost. Therefore, inspired by this characteristic of EV users, an online pricing mechanism is designed based on the
online algorithm. There are three-fold benefits of the proposed pricing mechanism: giving discount to the flexibility of EV users,
ensuring fairness among EV users and the individual optimal strategies of EV users jointly achieve minimizing cost of the CS.
Numerical results based on real data further verify the effectiveness of the proposed online algorithm and the pricing mechanism.
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1 Introduction

As a new-type of transportation, electric vehicles (EVs)

have enormous advantages contrasted with conventional ve-

hicles in emission reduction and energy saving, which re-

sult in the fast proliferation of EVs in recent years. As

EVs surging, their charging demands are also growing enor-

mously [1]. Charging stations (CSs) are the most common

places to charge EVs, but without proper management, the

heavy charging load not only poses a serious threat to power

grids due to sudden and uncertain spikes [2], but also causes

tremendous charging cost and unsafety to CSs, which signif-

icantly degrades the efficiency of CSs [3].

The cost and stability, in terms of stable charging load, are

the main concerns of a CS. In order to lead a CS to schedule

charging demand reasonably, an electricity pricing mecha-

nism have been widely adopted by power grid operators in

recent years. This pricing mechanism consists of two com-

ponents: the Time-of-Use (TOU) price related to what time

you use electric and critical peak price (CPP) imposed to

punish the peak power over a billing cycle [4, 5]. Under this

mechanism, there is a motivation for CSs to design an ef-

fective charging scheduling algorithm for reducing cost and

peak power. Note that, to activate the performance of the al-

gorithm, the response of EV users is indispensable. To this

end, a reasonable pricing mechanism is needed here consid-

ering the self-interest of user. However, the charging price

is generally fixed or related to the time slot at present. It is

worth noting that the common drawback of the static price

makes it hard to adapt the real-time load situation or its op-

erational condition of a CS [5].

Therefore, multifarious pricing mechanisms have been
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proposed or adopted in recent years [6–13]. Among them,

[6–9] consider the real-time electricity pricing that is defined

as a quadratic function of the current load with the purpose

of minimizing the total charging expense of EV users. There

is a fatal weakness for [6–9] that less consider the charging

expense of each EV user, which leads to EV users have no

motivation to obey the scheduling. In contrast, in [10–13],

the benefits of EVs have been taken into account according

to different purposes when pricing for each time slot, such as

minimizing the total social cost [10], avoiding network con-

gestion [11] and filling load valley [12, 13]. However, these

relevant works are designed in an offline fashion, which lim-

its the application.

Different from above works, we propose an online pric-

ing mechanism for EVs charging considering peak charge

for CS, which is not considered in above literatures. We first

introduce the cost optimization algorithm for a CS, which

needs the full knowledge of charging demand information

over a billing cycle, resulting in this algorithm can only run

in an offline fashion. Consequently, a simple yet effective

and implementable online scheduling algorithm, is proposed

by transforming the offline one. After that, based on the on-

line algorithm, we design an online pricing mechanism that

can adjust the demands submitted by EV users. There are

three-fold benefits of the proposed pricing mechanism: giv-

ing discount to the flexibility of EV users, ensuring fairness

among EV users and the individual optimal strategies of EV

users jointly achieve minimizing cost of the CS. Numerical

results based on real-world data show that the proposed on-

line algorithm and mechanism are effective and reasonable.

The rest of the paper is organized as follows. We for-

mulate the cost optimization problem for CS and discuss its

online approximate solution in Section 2. In Section 3, theo-

retical analysis and implementation processes of the pricing

mechanism are introduced. Section 4 presents the simulation

results. Finally, conclusions are drawn in Section 5.
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2 Problem Formulation and Transformation

In this section, we first propose an offline cost optimiza-

tion algorithm that assumes full knowledge of global charg-

ing information of EVs over a billing cycle. Although a

global optimal solution can be obtained by the offline cost

optimization algorithm, it is impossible to achieve in real

practice but can be seem as a benchmark. Consequently, a

simple yet effective and implementable online algorithm is

designed that requires zero future information, which is a

foundation of the proposed pricing mechanism in the next

section. As simulations in Section 4 suggest, the charging

cost and load profile obtained by the proposed online algo-

rithm are close to the posterior global optimum.

2.1 Optimization Problem of A CS
Suppose that I EVs would arrive during a billing period

T := {1, 2, . . . , T}, which is a discrete time horizon, and

let I := {1, 2, . . . , I} be the set of EVs. EV i randomly

arrives at a CS and submits its energy demand and depar-

ture time to the CS. Assume the energy demand of EV i can

be and must be fulfilled before its departure by the CS. The

charging mission of an EV i can be characterized by a tu-

ple πi := (ai, di, ei, x
max
i ), where ai and di are the arrival

and departure times, respectively, ei is the amount of energy

demand and xmax
i is the charging rate limit. Define xt

i as

the charging rate of EV i at time t. Since EV i can only be

charged when it is at the CS, the following constraints must

be satisfied:

xt
i ∈ [0, xmax

i ], ∀t ∈ [ai, di], ∀i ∈ I,

xt
i = 0, ∀t ∈ T\[ai, di], ∀i ∈ I.

(1)

To fulfill the charging mission of EV i before its departure,

we have

ei ≤
∑
t∈T

xt
i, ∀i ∈ I. (2)

As shown in Fig. 1, all EV charging loads are supplied by

a distribution transformer serving the CS. The transformer

has a capacity of P which the total charging load of the CS

cannot exceed at any time, i.e.,∑
i∈I

xt
i ≤ P, ∀t ∈ T. (3)

Note that if there are other loads connected to the distribu-

tion transformer, the model can be generalized such that P
is time-varying.

We denote the price of electricity at time t by ct in a billing

period. The prices are external and usually set based on the

grid operational conditions, i.e., high prices corresponding

to heavy load hours. However, there is still the possibility of

inelastic charging demand and EVs may coincide to charge

simultaneously that leads to load spikes to the grid. In order

to further reduce the peak load, the CS will pay a fee once

over a billing period for the peak load at the unit price of α
CNY/kW , which is known a priori. We are interested in

the following problem that minimizes the total charging cost

while ensuring the fulfillment of charging tasks for all EVs:

min
x

∑
i∈I

∑
t∈T

ctxt
i + αmax

t∈T

{∑
i∈I

xt
i

}
(4a)

s.t. (1)(2)(3) (4b)

Fig. 1: Illustration of an EV CS

where x := (xt
i, i ∈ I, t ∈ T). Suppose all EV informa-

tion (πi, i ∈ I) and price information (ct, t ∈ T) over a

billing cycle are known, solving problem (4) leads to a glob-

ally minimal total cost for the CS. As shown in the next sub-

section, (4) can be readily solved since it can be transformed

into a linear programming easily.

However, (4) is not implementable in practice where fu-

ture EV information is not available for each current time

slot and hard to determine the charging cost of each EV.

Therefore, we pursue an online algorithm to solve an ap-

proximate of this global problem, which is not only simple,

effective and implementable, but also makes it easy for a CS

to determine the different fee of each EV that stimulates EV

owner adjusting their demand to flatten the load and improve

operational efficiency of a CS as shown in Section 3.

2.2 Problem Transformation
To solve the above problem (4) in an online fashion, there

are two key issues. First, global information including EVs’

arrival times and electricity prices in the future are unknown.

Second, the posterior peak load over a billing cycle is un-

known. We introduce a sliding time window mechanism to

handle the first issue and the second issue is tackled by pre-

dicting locally the global peak load over a billing period.

For convenience, we define It as the set of current EVs

in the CS at time t and Tt as the scheduling time win-

dow. Fig. 2 shows an example for better understanding

of It and Tt, where It = {EV 1, EV 2, EV 3} and Tt =
{t : t3 ≤ t ≤ t11}. The sliding time window mechanism

Fig. 2: Illustration of the sliding window mechanism

means that we only consider the current information of EVs

in the set It and the time window Tt. As the time window

moves on, if a EV enters the CS and requests to charge then

we re-solve the current local optimization problem (4) to up-
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date the charging rates to implement whenever a new EV

comes to the CS or a latest electricity price is released.

Let vpv be the previous peak load and vpd be predicted

peak load over a billing cycle. To circumvent the difficulty

of characterizing the exact peak load, we instead utilize the

current peak load and the predicted one from historical data.

As a result, we approximate the global problem (4) by

problem (5). Since we only have the current EV information

in hand, i.e., {πi, i ∈ It}, thus maxt∈Tt

{∑
i∈I

xt
i

}
can no

longer represent the peak load over the whole billing cycle.

min
x,v

∑
t∈Tt

∑
i∈It

ctxt
i + αv (5a)

s.t.
∑
i∈It

xt
i ≤ P, ∀t ∈ Tt (5b)

ei ≤
∑
t∈Tt

xt
i, ∀i ∈ It (5c)

max{
∑
i∈It

xt
i, v0} ≤ v, ∀t ∈ Tt (5d)

xt
i ∈ [0, xmax

i ], ∀t ∈ [ai, di], ∀i ∈ It

xt
i = 0, ∀t ∈ Tt\[ai, di], ∀i ∈ It,

(5e)

where v0 is a constant summarizing the peak load so far and

the predicted global peak load as v0 := max{vpv, vpd}. We

introduce an auxiliary scalar variable v to serve as a proxy

for the global peak load. The advantages of this approxima-

tion are as follows:

1) (5) is a linear programming problem, which have been

well studied and easy to solve.

2) The constraints (5d) and (5e) circumvent the difficulty

of characterizing the exact peak load in a billing cycle.

For example, if
∑

i∈It
xt
i ≤ v0, ∀t ∈ Tt, it means the

constraint (5d) is redundant and the second term of (5a)

is constant as αv0 and thus negligible.

3) Since the peak load in a billing cycle is relatively easy

to predict compared with each EV i’s information πi,

we can readily obtain vpd from the historical data. It

enables us to make full use of the information that are

easy to obtain. Besides, the model is simple to imple-

ment in practice.

3 Pricing Mechanism

Problem (5) assumes that all EV users are completely self-

less people, so that each EV user i can report the real demand

information πi to the CS. However, in reality, with a fixed

predetermined price, all EV users are rational and they want

to complete the energy demand in the fastest time and the

lowest cost. Consequently, the scheduling space of CS will

be small that leads to the optimization effect of problem (5)

becomes worse and hard to adapt the real operational en-

vironment of a CS. Therefore, in this section, in order to

maximize the operating efficiency of CSs and mobilize the

enthusiasm of users, a pricing mechanism is designed.

3.1 Theoretical Analysis
From the above, (5), or equivalently (4), can be efficiently

solved by existing algorithms or solvers. The optimal so-

lution of (5) is denoted as (x∗, v∗). Even with the optimal

scheduling at hand, it remains a critical issue how to charge

EVs legitimately for the charging service.

Now that we already bear in mind the optimal peak load v∗

and its corresponding cost1, we maintain v∗ as the maximum

allowable peak load and replace v with v∗ in (5):

min
x

∑
i∈It

∑
t∈Tt

ctxt
i + αv∗ (6a)

s.t. ei ≤
di∑

t=ai

xt
i, ∀i ∈ It (6b)

xt
i ∈ [0, xmax

i ], ∀t ∈ [ai, di], ∀i ∈ It

xt
i = 0, ∀t ∈ Tt\[ai, di], ∀i ∈ It

(6c)

∑
i∈It

xt
i ≤ v∗, ∀t ∈ Tt (6d)

where the second term αv∗ in the objective is constant and

negligible. (6d) enforces that the aggregate charging load at

any time should not exceed v∗. Note that originally EVs’

concerns of energy prices and feasibility restrain the peak

load from further descending, while now the peak charge is

transformed to a hard constraint that binds EVs’ charging

rates, which, as we will show later, is more intuitive to quan-

tify the role of each EV in limiting the peak load.

We introduce the Lagrange multipliers λ := (λt, t ∈
Tt) for (6d) and define the partial Lagrangian L(x, λ) :=∑

i∈It

∑
t∈Tt

ctxt
i +

∑
t∈Tt

λt(
∑

i∈It
xt
i − v∗). The corre-

sponding dual problem for (6) can be formalized as

max
λ≥0

min
x:(6b)(6c)

L(x, λ) (7)

Since (6) is a linear programming with (6b)-(6d) all

affine, the Slater’s condition holds that further guaran-

tees strong duality, i.e., maxλ≥0 minx:(6b)(6c) L(x, λ) =
minx:(6b)(6c) maxλ≥0 L(x, λ) =
minx:(6b)(6c)(6d)

∑
i∈I

∑
t∈T

ctxt
i. Therefore, an optimal

scheduling x∗ of (7) is also an optimal solution to (6).

The dual problem is shown in below and let λ∗ be its op-

timal solution. Then the inner problem minx:(6b)(6c) L(x, λ∗)
is separable among all EVs, i.e.,

Individual scheduling subproblem:

min
xi

di∑
t=ai

(ct + λt∗)xt
i (8)

s.t. (6b)(6c)

where xi := (xt
i, t ∈ Tt). This indicates that given the

time-varying pricing scheme (ct + λt∗, t ∈ Tt), it could be

guaranteed that EVs individually charging strategies are the

optimum but still jointly achieve the optimal peak load v∗ as

well as the optimal scheduling x∗, i.e., the cost of the station

is minimized.

Note that (6) can be efficiently solved by existing algo-

rithms like dual simplex algorithm or solvers like CVX[14],

hence λ∗ can be easily obtained. Therefore, the cost of each

EV can be determined legitimately.

The benefits of our proposed pricing mechanism are as

fellows:

1Without energy expenditure, v∗ would be the biggest value of the pre-

vious maximum peak load over a billing vpv and the predicted peak load

over a billing cycle vpd.
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1) Economically Efficiency: As explained above, the

mechanism is also economically efficient in terms of

achieving social optimum.

2) Fairness: Note that the loads at time slots with high

added values λt∗ > 0 should reach v∗, λt∗ is there-

fore set to induce some EVs to shift loads to other

slots such that peak loads exceeding v∗ can be avoided.

Since the prices are uniformly imposed on all EVs, the

scheme (ct + λt∗, t ∈ Tt) is fair as an EV i is charged∑di

t=ai
(ct + λt∗)xt∗

i that minimizes individual cost.

3) Discount for flexibility: Intuitively, if an EV i post-

pones its departure time di, more scheduling flexibil-

ity is available for the station to lower the cost. There-

fore, EV i ought to enjoy a discount as reward, i.e., the

expense of an EV i should be non-increasing w.r.t di.
However, the challenge here is that di is a parameter

in the problem whose effect on the expense of EV i is

implicit through (4) first and then (6).

3.2 Implementation of Pricing Mechanism
Here is a sketch of the implementation of our proposed

pricing mechanism. Note that there are three possible cases

about the Lagrange multipliers λ := (λt, t ∈ Tt) for (6d) of

problem (6):

1) (6) is feasible and ∀λt∗ = 0, t ∈ Tt. This case demon-

strates that there is no tense time slot. Therefore, we

do not need to adjust the price to change the EV user’s

demand.

2) (6) is feasible and ∃λt∗ > 0, t ∈ Tt. This case indi-

cates that there are some emergency time slots, where

the load is heavy but the price is low and need to raise

the price, i.e. let the price equal to ct + λt∗, t ∈ Tt, so

that EV users have the reason to submit demands that

can avoid high-load slots.

3) (6) is infeasible, ∃λt∗ = ∞, t ∈ Tt. Some EV users are

urgent to complete the charging demand. Compared to

the cost, they care about the charging time. They tend

to submit an exigent charge mission to the CS, which

will break the constraint (6d) . If we are in the con-

dition of ensuring the transformer capacity limit P not

exceed, i.e., v∗ < vpv < P , the exigent charge mission

is acceptable, If not, reject the request. Consequently,

if we accept the exigent charge mission, v∗ in (6) will

change according to v∗ := max{v∗, vpv}. Note that v∗

obtained by the analysis of historical data and equiva-

lents to vpd mentioned in the previous section.

For cases 1) and 2), the price is clear, i.e., ct+λt∗, t ∈ Tt.

The cost of EV user i is

∑
t∈Tt

(ct + λt∗)xt
i, ∀t ∈ Tt. (9)

For case 3), to make problem (6) feasible, we drop the con-

straint (6d) from problem (6) then solve it, we can obtain

the total profile pt, t ∈ Tt then let pm = max {pt, t ∈ Tt}.

If pm > P , reject the request. If pm < P then let

ct = max {ct, t ∈ T} when pt > v∗, otherwise, ct = ct.
Note that vpv = pm. The cost of EV user i as shown in (10),

in addition to energy costs, a tariff imposed to charge peak

power increment, i.e. vpv − v∗, should be charged.∑
t∈Tt

ctxt
i + γ(vpv − v∗), ∀t ∈ Tt. (10)

where γ is a constant, which is a penalty coefficient to EV

user i for raising the value of v∗. The energy demand ei of

EV i is updated as follows:

ei =

⎧⎨
⎩

0, if EV i finishes charging
ei, if EV i arrives

ei − xt
i, otherwise.

(11)

The pricing mechanism is summarized in Algorithm 1.

Algorithm 1 Pricing Mechanism

Input: ct, P , v∗,πi.

Output: The cost list of EV user i .

1: for t = 1 to T do
2: Set ai = t for EV i currently in the CS.

3: if an EV i, or more than one, arrives and submits an

4: energy demand ei then
5: Calculate The shortest charging time slots ∇t.

6: for t
′

= ai +∇t to ai +∇t+ 4 hours do
7: Assume di = t

′
and determine It, Tt based on

8: time t
′
.

9: Solve problem (6) to obtain x then according to

10: different cases (9) and (10), we can obtain the

11: charging cost of EV i corresponding di.
12: end for
13: Give the cost list corresponding departure time to EV

14: user i and then let EV user i chooses a departure time

15: or rejects to charge.

16: end if
17: if x is not empty then
18: Update {ei, i ∈ It} according to (11).

19: end if
20: end for

4 Simulation Results

We use the real-world charging data from January 2016

to March 2018 provided by the South China Charging Tech-

nology Co., Ltd to evaluate the performance of our proposed

online algorithm and pricing mechanism.

As shown in Fig. 3, TOU electricity prices are divided

into three categories: the off-peak price 0.36 CNY/kWh,

shoulder price 0.73 CNY/kWh and on-peak price 1.08

CNY/kWh, while the CPP is 44 CNY/kW . For con-

venience, we consider a day of 24 h as a billing period,

where each time slot lasts 15 minutes. The CPP is then

correspondingly transformed from 44 CNY/kW to 1.446

CNY/kW by assuming that there are 30 days in a month,

i.e., α=44/30=1.446 CNY/kW . The peak load over a

billing cycle is predicted by calculating the average of the

historical peak loads. All the convex optimization problems

are solved by CVX with Matlab 2016b on a computer with

3.4GHz Intel Core i5-7500 CPU and 8 GB memory.

4.1 Online Algorithm Performance
We demonstrate the performance of our proposed online

cost optimization algorithm by comparing with the following

different scheduling strategies:
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Fig. 3: TOU electricity prices

1) EC: Eagerly charging strategy, which means EV i is

charged at the maximum charging rate until the charg-

ing task is completed.

2) OFC: offline optimal charging strategy (4), which

achieves the globally minimal total cost by assuming

full knowledge of future information.

3) OLC: online optimal charging strategy (5) with predict-

ing the peak load vpd over a billing cycle.

The corresponding normalized costs for different strate-

gies are shown in Fig. 4, where the charging costs are nor-

malized with respect to the benchmark of OFC. EC has

much higher charging cost due to the lack of scheduling.

0.4%−3.23% difference in cost is shown with different num-

bers of EVs between OLC and OFC.
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Fig. 4: Charging costs of different algorithms

Fig. 5 shows the charging power trajectories over a day

under different algorithms. Seen from the figure, the load

profile of OFC is quite similar to that of OLC.

4.2 Simulation Analysis of Pricing Mechanism
To briefly illustrate the feasibility of the proposed pricing

mechanism, we do not consider the possible case 3) men-

tioned in the subsection 3.2. While γ can be set according

to market circumstances by a CS. For the other two possible

cases, we assume that an EV user i submits a charging de-

mand of 60 kW to the CS and the maximum charging rate

rmax
i of this EV is rmax

i = 60kW/h. The CS needs to give

a tariff corresponding to departure time of EV user i. In the

simulations, v∗ is equal to 2500 kW which is obtained by

10 20 30 40 50 60 70 80 90

Time Slot (15min/slot)

0

500

1000

1500

2000

2500

3000

3500

4000

kW

EC
OLC
OFC

Fig. 5: Charging power trajectories over a day under differ-

ent algorithms

calculating the average of the historical peak loads. The two

cases are as follows:

1) Case 1: the charging load is not heavy. We assume that

the EVs are charging in the CS at time slot 1 as shown

in Fig. 5, where the charging load is not heavy.

2) Case 2: the charging load is heavy. We assume that the

EVs are charging in the CS in the time slot 55, where

the charging load is heavy.

Electricity bill changes over EV user i’s departure time and

changes in electricity price for the two cases are shown in

Fig. 6. Since in the slot 1 the charging load is not heavy,

the pricing mechanism will not change the electricity bill of

EV user i, even if EV user provides later departure time as

shown in Fig. 6(a)(b). On the contrary, in the time slot 55

to 60, the charging load is heavy and the load may exceed

v∗ as shown in Fig. 5. However, The price of electricity in

the time slot 55 and 56 are relatively small compare to the

time slot 57 to 66. Therefore, under the effect of our pro-

posed pricing mechanism, the electricity prices of the time

slot 55 and 56 increase as shown in Fig. 6(d). We can see

from Fig. 6(c), that the electricity bill of EV user i will de-

crease about 30% if his departure time is after the time slot

71. Since EV i avoids the rush charging hours and high-

priced slots, the electricity bill reduction is produced.

5 Conclusion

In the context of a current electricity tariff mechanism,

which additionally charges for peak power, we present an

offline cost optimization algorithm of a CS but cannot im-

plement in practice. Then, a simple yet effective and imple-

mentable online algorithm is proposed by assuming all EV

users will submit a real charging demand. However, EV user

tends to make decisions that beneficial for himself without

considering CS. To this end, an online pricing mechanism

is designed to guide EV users to make decisions that also

minimize the total charging cost of a CS.

The proposed pricing mechanism has three main advan-

tages. First, it could be guaranteed that EVs individually

charging strategies are the optimum but still jointly achieve

the optimal scheduling of the station. Second, it can assure

the fairness between EV users. Third, it gives a discount to

the flexibility, i.e., the departure time of EV users. Numeri-

cal results based on real-world data show that our proposed
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(d) Case 2: changes in price of each time slot

Fig. 6: Electricity bill changes over EV user’s departure time and changes in price of each time slot

online algorithm can achieve a very close charging cost to

optimal offline solution and our price mechanism can pro-

vide a tariff to EV users so that they can submit a reasonable

demand and departure time to the CS, reducing the charging

cost and smoothing the power trajectory.
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