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Abstract—From the view point of a charging station (CS),
it is important to design a simple, effective and implementable
algorithm that reduces the cost, improves the time efficiency and
enhances operational stability. Offline algorithms built on global
information, in practice, cannot be implemented to achieve
the best performance, since current charging rates of existing
electric vehicles (EVs) need to be determined in the absence
of future information. In the context of a current electric-
ity tariff mechanism, commonly imposed in industry, which
additionally charges for peak demand, this paper proposes
an online two-stage charging scheduling algorithm (OTCSA)
based on observed real time information and historical data to
minimize charging cost, reduce charging time, as well as lower
the maximum peak power. In the first stage, charging cost is
minimized with guarantee to fulfill energy demand of each EV
before its departure. The additional cost that penalizes peak
demand inherently contributes to flattening the load profile of
the CS with the deferrability of EV charging. In the second
stage, we squeeze to save more charging time for EVs given
the minimal cost. Simulations further validate the three-fold
benefits of the proposed approach.

Index Terms—Charging station, optimization, electric vehi-
cles, coordinated charging

I. INTRODUCTION

As a new means of transportation, electric vehicles (EVs)
have enormous advantages contrasted with conventional ve-
hicles in emission reduction and energy saving. The fast
proliferation of EVs has become a trend in recent years. As
EVs surge, their charging demand has also been enormously
growing [1]. CSs are among the most common places to
charge EVs, where coordination on EV charging has been
extensively studied [2]–[6]. Without proper management,
the heavy charging load not only poses a serious threat to
power grids due to sudden and uncertain spikes [7], but also
causes tremendous charging cost and exhausting charging
time, which significantly degrades the efficiency of a CS [2].
Considering the deferrability of EV charging, it is imperative
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to implement effective coordinated scheduling strategies in
CSs.

Coordination on EV charging is a well-studied problem
[2]–[13]. [8]–[11] all consider the real-time electricity pricing
that is defined as a quadratic function of the current load.
Among them, [8]–[10] aim to minimize the total charging
cost of EVs. Specifically, [8] formulates the problem as a
finite-horizon dynamic programming with a continuous state
and action space while [9] designs a KKT-based online
algorithm that requires zero future information to reduce
computational complexity. [10] utilizes a time sliding win-
dow mechanism to design a distributed charging scheme
that also implements in an online fashion. [11] further takes
EV owners’ convenience into account and obtains a Pareto-
optimal solution by transforming a bi-objective optimiza-
tion problem into a two-stage problem. In contrast, [12],
[13] adopt the predetermined Time-of-Use (TOU) electricity
pricing. [12] maximizes the revenue of a CS by purchasing
energy from the power grid and selling it to EV owners to
fulfill their charging demand. In [13], an adaptive charging
network is introduced which adjusts the charging rates of
EVs in real time to reduce the total cost to charge EVs.
However, most, if not all, of these relevant works only upper
bound the total charging load of EVs by physical limits from
transformers or lines without considering peak shaving within
the bound.

Different from above works, the electricity cost of a CS
in our paper consists of two components: expenditure of
purchasing energy from the grid and a tariff imposed to
charge peak demand over a billing period, e.g., a month.
The pricing mechanism encourages CSs to shave their peak
loads and strike a tradeoff between these two costs. In order
to minimize the cost of a CS and increase time efficiency, we
propose an online two-stage charging scheduling algorithm
(OTCSA) that is readily implementable. In the first stage, we
approximate the global offline problem by a local problem
that can be executed online in a receding horizon fashion to
address the global temporal coupling within a whole billing
period. Besides, energy demands of all EVs is fulfilled before
departure with guarantee. In the second stage, we further
exploit the flexibility in EV charging to save more charging
time while maintaining the minimal charging cost, which can
improve the time efficiency of the CS and raise EV owners’
satisfaction.

The rest of the paper is organized as follows. We formulate
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the scheduling problem for EV charging and discuss its
online approximate solution in Section II. In Section III, we
propose a method to save charging time given the first-stage
minimal cost. Section IV presents the simulation results.
Finally, the paper is concluded in Section V.

II. OPTIMIZATION OF CHARGING COST

Charging cost and operational stability, in terms of stable
and steady EV charging load, are the main concerns of CSs,
since the efficient operation of CSs and the low cost of EV
charging are key factors that contribute to the popularization
of EVs [1].

However, at present, uncoordinated EVs’ charging be-
havior leads to high charging cost and poses a threat to
the power grid due to sudden and uncertain load spikes.
Therefore, we propose a charging scheduling algorithm to
handle the common electricity tariff in industry that charges
peak demand in a given billing cycle. Note that the tariff
inherently encourages peak shaving. We first present an
offline optimization algorithm that assumes full knowledge of
global information, which outputs a global optimal solution
that is impossible to achieve in real practice but can be seem
as a benchmark. Then we proceed to design a simple, yet ef-
fective and implementable online algorithm that requires zero
future information. As simulations in Section IV suggest,
the charging cost and load profile obtained by the proposed
online algorithm are close to the posterior global optimum.

A. Problem Formulation

Suppose that I EVs would arrive during a billing period
T := {1, 2, . . . , T}, which is a discrete time horizon, and
let I := {1, 2, . . . , I} be the set of EVs. EV i randomly
arrives at a CS and submits its energy demand and departure
time to the CS. Assume the energy demand of EV i can
be and must be fulfilled before its departure by the CS.
The charging mission of an EV i can be characterized by a
tuple πi := (ai, di, ei, x

max
i ), where ai and di are the arrival

and departure times, respectively, ei is the amount of energy
demand, and xmax

i is the charging rate limit. Define xti as
the charging rate of EV i at time t. Since EV i can only be
charged when it is at the CS, the following constraints must
be satisfied:

xti ∈ [0, xmax
i ], ∀t ∈ [ai, di],∀i ∈ I,

xti = 0, ∀t ∈ T\[ai, di],∀i ∈ I.
(1)

To fulfill the charging mission of EV i before its departure,
we have

ei ≤
∑
t∈T

xti, ∀i ∈ I. (2)

As shown in Fig. 1, all EV charging loads are supplied by
a distribution transformer serving the CS. The transformer
has a capacity of P which the total charging load of the CS
cannot exceed at any time, i.e.,∑

i∈I
xti ≤ P, ∀t ∈ T. (3)

Note that if there are other loads connected to the distribution
transformer, the model can be generalized such that P is
time-varying.

Fig. 1: Illustration of an EV CS

We denote the price of electricity at time t by ct in a billing
period. The prices are external and usually set based on the
grid operational conditions, i.e., high prices corresponding
to heavy load hours. However, there is still the possibility of
inelastic charging demand and EVs may coincide to charge
simultaneously that leads to load spikes to the grid. In order
to further reduce the peak load, the CS will pay a fee once
over a billing period for the peak load at the unit price of
α CNY/kW , which is known a priori. We are interested in
the following problem that minimizes the total charging cost
while ensuring the fulfillment of charging tasks for all EVs:

min
x

∑
i∈I

∑
t∈T

ctxti + αmax
t∈T

{∑
i∈I

xti

}
(4a)

s.t. (1)(2)(3) (4b)

where x := (xti, i ∈ I, t ∈ T). Suppose all EV information
(πi, i ∈ I) and price information (ct, t ∈ T) over a billing
cycle are known, solving problem (4) leads to a globally
minimal total cost for the CS. Clearly, (4) can be readily
solved since it can be transformed into a linear programming
easily as shown in the next subsection.

However, (4) is not implementable in practice where future
EV information are not available for each current time
slot. Therefore, we pursue an online algorithm to solve an
approximate of this global problem, which is simple, effective
and implementable.

B. Online Solution
To solve the above problem (4) in an online fashion,

there are two key issues. First, global information including
EVs’ arrival times and electricity prices in the future are
unknown. Second, the posterior peak load over a billing cycle
is unknown. We introduce a sliding time window mechanism
to handle the first issue and the second issue is tackled by
predicting locally the global peak load over a billing period.

For convenience, we define It as the set of current EVs
in the CS at time t and Tt as the scheduling time win-
dow. Fig. 2 shows an example for better understanding of
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It and Tt, where It = {EV 1, EV 2, EV 3} and Tt =
{t : t3 ≤ t ≤ t11}. The sliding time window mechanism

Fig. 2: Illustration of the sliding window mechanism

means that we only consider the current information of EVs
in the set It and the time window Tt. As the time window
moves on, we re-solve the current local optimization problem
(4) to update the charging rates to implement whenever a new
EV comes to the CS or a latest electricity price is released.

Note that the cost depends on the peak load over a billing
cycle. Let vpv be the previous peak load and vpd be predicted
peak load over a billing cycle. To circumvent the difficulty
of characterizing the exact peak load, we instead utilize the
current peak load and the predicted one from historical data.

As a result, we approximate the global problem (4) by
problem (5). Since we only have the current EV information
in hand, i.e., {πi, i ∈ It}, thus maxt∈Tt

{∑
i∈I x

t
i

}
can no

longer represent the peak load over the whole billing cycle.

min
x,v

∑
t∈Tt

ct
∑
i∈It

xti + αv (5a)

s.t.
∑
i∈It

xti ≤ P, ∀t ∈ Tt (5b)

ei ≤
∑
t∈Tt

xti, ∀i ∈ It (5c)∑
i∈It

xti ≤ v, ∀t ∈ Tt (5d)

v0 ≤ v (5e)
xti ∈ [0, xmax], ∀t ∈ [ai, di],∀i ∈ It
xti = 0, ∀t ∈ Tt\[ai, di],∀i ∈ It,

(5f)

where v0 is a constant summarizing the peak load so far and
the predicted global peak load as v0 := max{vpv, vpd}. We
introduce an auxiliary scalar variable v to serve as a proxy for
the global peak load. The advantages of this approximation
are as follows:

1) (5) is a linear programming problem, which have been
well studied and easy to solve.

2) The constraints (5d) and (5e) circumvent the difficulty
of characterizing the exact peak load in a billing cycle.
For example, if

∑
i∈It x

t
i ≤ v0, ∀t ∈ Tt, it means the

constraint (5d) is redundant and the second term of (5a)
is constant as αv0 and thus negligible.

3) Since the peak load in a billing cycle is relatively easy to
predict compared with each EV i’s information πi, we

can readily obtain vpd from the historical data. It enables
us to make full use of the information that are easy to
obtain. Besides, the model is simple to implement in
practice.

III. OPTIMIZATION OF CHARGING TIME AND
IMPLEMENTATION OF OTCSA

We define zt as the total charging load of the CS at time
t and zt

∗
=
∑

i∈It x
t∗

i , where xt
∗

i is the optimal charging
rate of EV i at time t obtained from solving (5). Note that
the value of (5a) is only related to zt, thus the problem (5)
may actually have multiple explicit solutions in terms of xti.
For example, as shown in Fig. 3, suppose there are two EVs
It = {1, 2} and two time slot Tt = {t1, t2} with the same
price ct1 = ct2. Say the solution to (5) is zt1

∗
= zt2

∗
= 20,

then obviously xt11 = xt21 = xt12 = xt22 = 10 denoted as
solution 1 and xt11 = xt22 = 20, xt21 = xt12 = 0 denoted as
solution 2 are two solutions with the same total charging cost.
However, the total charging time they require is different, i.e.,
EV1 can fulfil the task ahead of schedule.

Fig. 3: Illustration of different solutions with the same cost
but the different total charging time

This simple example motivates us to search for the most
time efficient solution among the optimal solutions from (5).
We reschedule the charging rates of EVs to save the total
charging time while fixing the charging cost at minimum,
which can improve the time efficiency of CSs and EV own-
ers’ satisfaction. Finally we summarize the implementation
of our two-stage algorithm.

A. Optimization of Charging Time
Our goal is to minimize the total EV charging time while

maintaining the optimal cost of (5). This will improve the
time efficiency of the CS and EV owners’ satisfaction. To
this end, we are interested in the following problem:

max
x

∑
t∈Tt

∑
i∈It

1

ei
(di − t)xti (6a)

s.t.
∑
i∈It

xti = zt
∗
, ∀t ∈ Tt (6b)

ei ≤
∑
t∈Tt

xti, ∀i ∈ It (6c)

xti ∈ [0, xmax
i ], ∀t ∈ [ai, di],∀i ∈ It

xti = 0, ∀t ∈ Tt\[ai, di],∀i ∈ It.
(6d)
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Note that 1
ei
(di−t) decreases linearly in t, and a small energy

demand ei means a big weight 1
ei
(di − t). Consequently the

objective function (6a) encourages that the CS completes
charging tasks of EVs as soon as possible and prioritizes
EVs with small energy demand.

Lemma 1. The problem (6) is always feasible, and the
optimal charging cost calculated from the first stage remains
unchanged.

Proof. First, it is easy to argue that there is at least one feasi-
ble solution to the problem (6). Note that the optimal solution
{xt∗i , i ∈ It, t ∈ Tt} to the problem (5) is always a feasible
solution to the problem (6), since {xt∗i , i ∈ It, t ∈ Tt} satisfy
all the constraints (6b)-(6d). Then the lemma follows as the
constraint (6a) fix the optimal charging cost of (5) which is
only related to zt.

B. Implementation of OTCSA

Here is an overview of the implementation of the two-stage
OTCSA. First, we calculate zt∗ by solving the problem (5)
in the first stage. Then, we solve problem (6) in the second
stage to obtain the most time efficient charging rate {xti, i ∈
It, t ∈ Tt}. The energy demand ei of EV i is updated as
follows:

ei =

 0, if EV i finishes charging
ei, if EV i arrives

ei − xti, otherwise
(7)

OTCSA is summarized in Algorithm 1.

Algorithm 1 OTCSA
Input: ct, {πi | i ∈ It}, P , v0
Output: x∗ := {xt∗i | i ∈ It, t ∈ Tt}

1: for t = 1 to T do
2: Set ai = t for EV i currently in the CS, and
3: determine It, Tt based on time t.
4: if an EV arrives then
5: Solve the first-stage optimization problem
6: (5) to obtain the optimal {zt∗ | t ∈ Tt}.
7: Solve the second-stage optimization problem
8: (6) to obtain the optimal x∗.
9: end if

10: if x is not empty then
11: Update {ei, i ∈ It} according to (7).
12: end if
13: end for

IV. SIMULATION RESULTS

We use the real-world charging data from January 2016
to March 2018 provided by the South China Charging
Technology Co., Ltd to evaluate the performance of OTCSA.

As shown in Fig. 4, the number of EVs to be charged
varies in time. In 12:00-24:00, it is likely that congestion

and heavy loads of CSs would occur due to high demand.
We define li as EV i’s laxity:

li :=
(di − ai) ∗ xmax

i

ei
.

If li = 1 then EV i’s energy demand can be satisfied only if
it is charged at its peak charging rate from ai to di. If li < 1
then it is impossible to satisfy EV i’s energy demand before
its departure. li > 1 means there is flexibility with EV i’s
charging task. As is shown in Fig. 5, the average laxity of
the real-world charging data is 2.51 and the variance is 1.41.
The proportion of charging tasks with li = 1 is less than 3%,
therefore there is enough flexibility to exploit, and OTCSA is
expected to reduce the charging cost, improve time efficiency
and operational stability.
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Fig. 4: Normalized Number of EVs

Fig. 5: EVs’ Laxity

The electricity price of a large CS in a city like Shenzhen,
China [14], consists of two components: TOU electricity
prices for the energy purchased from the grid and the
peak price to charge the peak load over a billing cycle,
i.e., a month. As shown in Fig. 6, TOU electricity prices
are divided into three categories: the off-peak price 0.36
CNY/kWh, shoulder price 0.73 CNY/kWh and on-peak
price 1.08 CNY/kWh. The peak price is 44 CNY/kW . For
convenience, we consider a day of 24 h as a billing period,
where each time slot lasts 15 minutes. The peak price is then
correspondingly transformed from 44 CNY/kW to 1.446
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CNY/kW by assuming that there are 30 days in a month,
i.e., α=44/30=1.446 CNY/kW . The peak load over a billing
cycle is predicted by calculating the average of the peak
load based on historical data. All the convex optimization
programs are solved by CVX [15], [16] with Matlab 2016b
on a computer with 3.4GHz intel Core i5-7500 CPU and 8
GB memory.
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Fig. 6: Illustration of TOU electricity price

we compare the following scheduling strategies:
1) EC: fast charging scheme, which means EV i is charged

at the maximum charging rate until the charging task is
completed.

2) OFC: The offline optimal charging scheme (4), which
achieves the globally minimal total cost by assuming
full knowledge of future information.

3) FSC1: The first stage online optimal charging scheme
(5) without predicting the peak load over a billing cycle,
i.e., vpd = 0.

4) FSC2: The first stage online optimal charging scheme
(5) with predicting the peak load vpd over a billing cycle.

5) OTCSA: The online two-stage charging scheduling al-
gorithm as shown in Algorithm 1.
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Fig. 7: Illustration of charging cost comparison under differ-
ent algorithms

We evaluate the charging costs with different numbers
of EVs in the CS. The corresponding results for different

algorithms are shown in Fig. 7, where the charging costs
are normalized with respect to the benchmark of OFC.
EC has much higher charging cost due to the lack of
scheduling. 0.77%− 4.29% difference in cost is shown with
different numbers of EVs between FSC1 and OFC, while
0.4% − 3.23% difference in cost is shown with different
numbers of EVs between FSC2 and OFC. The difference
between FSC2 and OTCSA is much smaller compared with
OTCSA or FSC2. The average cost is very close for OTCSA
and FSC2, less than 5.05 CNY. Lemma 1 does not hold in an
online setting since the states of charge of EVs are updated
in different ways that lead to different overall charging
trajectories.

OTCSA has a cost almost the same as FCS2. However, a
great amount of charging time is saved, as shown in Fig. 8,
due to the second-stage rescheduling. As shown in Fig. 9,
when the number of EVs is 1400, OTCSA can reduce the
peak load by 37% compared to EC, and the load profile of
OFC is similar to that of OTCSA.
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Fig. 8: Illustration of the time slot saved by adding the second
optimization

10 20 30 40 50 60 70 80 90

Time Slot (15min)

0

500

1000

1500

2000

2500

3000

3500

4000

kW

EC
FSC1
FSC2
OTCSA
OFC

Fig. 9: Illustration of charging power trajectories over a day
under different algorithms

We simulate 50 cases for a fixed number of EVs to verify
the well performance stability of OTCSA. Fig. 10(a) shows
that the normalized charging cost difference between OFC

469

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 05:04:39 UTC from IEEE Xplore.  Restrictions apply. 



200 400 600 800 1000 1200 1400

Number of EVs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N
or

m
al

iz
ed

 D
iff

er
en

ce

(a)

200 400 600 800 1000 1200 1400

Number of EVs

0.15

0.2

0.25

0.3

0.35

pr
op

or
tio

n

(b)

200 400 600 800 1000 1200 1400

Number of EVs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

kW

FSC2
OTCSA
OFC
EC

(c)

Fig. 10: Impact of EV number on (a) normalized cost difference between OFC and OTCSA, (b) proportion of time slots
saved of OTCSA more than those of FSC2 to the total charging time, (c) maximum peak power over a billing period

and OTCSA, as the number of EVs increases, tends to smaller
and fluctuates very little. The proportion of time slots saved
of OTCSA more than those of FSC2 to the total charging
time slots is approximately 0.25 as shown in Fig. 10(b). We
can see from Fig. 10(c), the maximum peak power over a
billing period can be greatly reduced by OFC or OTCSA,
and OTCSA has almost no effect on peak power compared
to FSC2.

V. CONCLUSION

Charging cost, time efficiency and lowering the maximum
peak power are the main concerns of CSs. To deal with the
tariff that additionally charges the peak demand of a CS,
we propose OTCSA to minimize the charging cost and time
of EVs in two stages. In the first stage, we minimize the
charging cost in an online fashion while ensuring that all
energy demands of EVs can be fulfilled before departure.
In the second stage, we save the charging time of EVs
while maintaining the minimal charging cost. Numerical
results based on real-world data show that OTCSA achieves
a charging cost close to the offline optimum, tremendously
reduces the peak load and saves a great amount of charging
time.
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