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A B S T R A C T

This paper proposes a market mechanism for multi-interval electricity markets with generator and storage
participants. Drawing ideas from supply function bidding, we introduce a novel bid structure for storage
participation that allows storage units to communicate their cost to the market using energy-cycling functions
that map prices to cycle depths. The resulting market-clearing process – implemented via convex programming
– yields corresponding schedules and payments based on traditional energy prices for power supply and per-
cycle prices for storage utilization. We illustrate the benefits of our solution by comparing the competitive
equilibrium – assuming price-taker participants – of the resulting mechanism to that of an alternative solution
that uses prosumer-based bids. Our solution shows several advantages over the standard prosumer-based
approach that prices energy per slot. It does not require a priori price estimation. It also incentivizes
participants to reveal their truthful cost, thus leading to an efficient, competitive equilibrium. Numerical
experiments using New York Independent System Operator (NYISO) data validate our findings.
1. Introduction

Energy storage systems like lithium-ion batteries have the technical
capability to provide essential grid services for system reliability and
power quality. These capabilities combined with the growing adoption
of non-dispatchable renewable energy sources are driving growing
participation of energy storage in grid operation and electricity mar-
kets [1–3]. A number of market dispatch models utilizing storage have
been proposed for the purposes of e.g., integrating renewable energy
sources [4,5], supporting transmission and distribution networks [6,7],
providing demand response [8]. However, most of these models assume
the canonical market mechanism for economic dispatch, which was
designed without accounting for the operational cost of storage, that
does not depend on energy supply, but rather charging–discharging
cycles.

Recent works have sought to account for storage usage cost in
the grid dispatch in two ways. The first approach seeks to develop
sequences of charge–discharge bids or control actions, using existing
market and reserve interfaces so as to maximize the storage operator
revenue (market payments minus storage operation cost) [9–12]. The
resulting optimization strategies rely on unknown prices that must be
estimated [9–11], or accounted in the worst case [12]. The second
approach incorporates the cost of storage operation by explicitly in-
troducing a usage cost based on either energy cycles in the dispatch
problem [13,14] or other proxies for storage degradation [15]. These
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strategies usually assume storage owners to be truthful in revealing
their cost and do not endow them with the flexibility of seeking profit
maximization. Moreover, these works provide little insight into how
storage owner incentives can affect the ability of a system operator to
efficiently operate the grid.

This paper provides insight into this problem through a novel mar-
ket mechanism design that captures the effect of storage and generator
owner incentives. We compare this approach to existing strategies
through analysis of the overall system efficiency via a competitive
equilibrium characterization, that assumes participants to be price-
takers. More specifically, we consider a multi-interval market model
where generators are endowed with a quadratic cost and bid using a
supply function, while storage owners quantify the storage usage cost
based on the degradation induced by the energy cycles. Our formu-
lation exploits previous work combining the Rainflow cycle counting
algorithm with a cycle stress function to obtain a notably convex cycling
cost function [11,14].

We consider two different bidding strategies for storage. In the
first setting, storage bids as a prosumer using a generalized supply
function [16], that allows it to behave as supply and demand, and is
compensated based on spot prices. Although such a market achieves a
competitive equilibrium, it requires that storage owners have a priori
knowledge of cleared prices, and leads to prices and dispatch schedules
that do not minimize the social cost. In order to overcome this inability
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to minimize social costs, we propose a new mechanism where storage
owners bid using an energy-cycling function. This function maps prices
(in dollars per cycle depth) to the corresponding cycle depth that
the user is willing to perform, and allows storage participants to be
compensated based on a per-cycle basis. We show that by properly
adapting the market-clearing to account for this bid, the competitive
equilibrium of this mechanism exists, and leads to a dispatch that
minimizes the overall social cost. These goals are achieved by inducing
a truthful bidding among storage owners that is independent of the
clearing prices. Numerical simulations show the advantages of the
proposed cycle based market mechanism by evaluating the social cost
and storage profit of the two mechanisms. We also include a setting
in which storage cost is fully disregarded in the market-clearing as a
baseline.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the social planner problem and storage cost model. In Section 3 we
characterize the equilibrium in the prosumer based market where all
participants participate using (generalized) linear supply function bids
and compare it with the social planner optimal solution. The energy-
cycling based function for storage is discussed in Section 4. We provide
the numerical illustrations and conclusions in Section 5 and Section 6,
respectively.

2. Social planner problem

In this section we formulate a social planner problem that aims to
achieve the optimal economic dispatch by minimizing the total cost of
dispatching both generators and storage units.

2.1. Problem formulation

Consider a multi-interval horizon {1, 2,… , 𝑇 } where a set  of
enerators and a set  of storage units participate in a market to meet
given inelastic demand profile 𝑑 ∈ R𝑇 . For each generator 𝑗 ∈ , the

power output over the time horizon is denoted by a vector 𝑔𝑗 ∈ R𝑇

hose elements are each subject to capacity constraints

𝑔
𝑗
≤ 𝑔𝑗,𝑡 ≤ 𝑔𝑗 , 𝑡 ∈ {1, 2,… , 𝑇 }, (1)

where 𝑔
𝑗
, 𝑔𝑗 denote the minimum and maximum generation limits,

espectively. Analogously, for each storage unit 𝑖 ∈  of capacity 𝐸𝑖, the
discharge (positive) or charge (negative) rates over the time horizon is
denoted by a vector 𝑢𝑖 ∈ R𝑇 . We assume each charge or discharge rate
𝑢𝑖,𝑡 is bounded as

𝑢𝑖 ≤ 𝑢𝑖,𝑡 ≤ 𝑢𝑖, 𝑡 ∈ {1, 2,… , 𝑇 }. (2)

here 𝑢𝑖, 𝑢𝑖 denote the minimum and maximum rate limits, respec-
tively. The corresponding amount of energy stored is characterized by
a normalized State of Charge (SoC) profile 𝑥𝑖 ∈ R𝑇+1, with the initial
SoC 𝑥𝑖,0 = 𝑥𝑖,𝑜. The SoC evolves over the time horizon according to

𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1 −
1
𝐸𝑖

𝑢𝑖,𝑡, 𝑡 ∈ {1, 2,… , 𝑇 }, . (3)

This evolution over the time horizon can be rewritten compactly as

𝐴𝑥𝑖 = − 1
𝐸𝑖

𝑢𝑖, (4)

here

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 1 0 … 0
0 −1 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 … 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑇×(𝑇+1).

o account for the cyclic nature of storage, we impose periodic con-
traints on the SoC that forces the storage to cycle back at the end of
he optimization horizon. This periodicity requirement as an equality
2

constraint is best suited when the following day’s prices or forecasts are
not known a priori, i.e.,

𝑥𝑖,0 = 𝑥𝑖,𝑇 = 𝑥𝑜. (5)

We note, however, that our results do not depend on the particular
choice between equality or inequality in (5).

Substituting (3) into (5) leads to

𝟏𝑇 𝑢𝑖 = 0. (6)

The normalized SoC satisfies

0 ≤ 𝑥𝑖,𝑡 ≤ 1, 𝑡 ∈ {0, 1,… , 𝑇 }, (7)

which can be rewritten using Eqs. (3) and (5) as

(𝑥𝑜 − 1)𝟏 ≤ �̃�𝑢𝑖 ≤ 𝑥𝑜𝟏, (8)

where

�̃� = 1
𝐸

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
1 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
1 … 1 1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑇×𝑇 ,

is a lower triangular matrix. Finally, the social planner problem is given
by

SOCIAL PLANNER

min
𝑔𝑗 ,𝑗∈,𝑢𝑖 ,𝑖∈

∑

𝑖∈
𝐶𝑖(𝑢𝑖) +

∑

𝑗∈

( 𝑐𝑗
2
𝑔𝑇𝑗 𝑔𝑗 + 𝑎𝑗𝟏𝑇 𝑔𝑗

)

(9a)

s.t. 𝑑 =
∑

𝑗∈
𝑔𝑗 +

∑

𝑖∈
𝑢𝑖 (9b)

(1), (2), (6), (8),

where (9b) enforces power balance for all time intervals. We use 𝐶𝑖(𝑢𝑖)
to represent the operational cost of storage unit 𝑖, to be defined in the
next subsection, and assume quadratic cost functions for the generators.
For ease of analysis we assume without loss of generality that the linear
coefficient 𝑎𝑗 = 0.

2.2. Storage cost model

The intrinsic degradation incurred due to repeated charging and
discharging half-cycles1 constitutes the main operational cost of stor-
age. We adopt the Rainflow cycle counting based method [17,18] to
enumerate the cycles, which we incorporate into a cycle based cost
function [10,11,14]. For each storage unit 𝑖 ∈ , the Rainflow cycle
counting algorithm maps the SoC profile 𝑥𝑖 to the associated charging–
discharging half-cycles, summarized in a vector of half-cycle depths
𝜈𝑖 ∈ R𝑇 . If the number of cycles is smaller than 𝑇 , we attach zeros
to fill in the vector of half-cycle depths such that 𝜈𝑖 ∈ R𝑇 always holds.
See, e.g., [14] for more details.

𝜈𝑖 ∶= Rainf low(𝑥𝑖).

Using the cycle depth vector 𝜈𝑖 one can quantify the capacity degrada-
tion using a cycle stress function 𝛷(⋅) ∶ [0, 1]𝑇 ↦ [0, 1]. In general, 𝛷(⋅)
is well approximated2 by a quadratic function [11], thus we consider
here

𝛷(𝜈𝑖) ∶=
𝜌
2
𝜈𝑇𝑖 𝜈𝑖,

where 𝜌 is a given constant coefficient [11,14]. This vector of identified
half-cycle depths 𝜈𝑖 is used to compute the total degradation cost of
storage 𝑖 as

𝑏𝑖
2
𝜈𝑇𝑖 𝜈𝑖 =

𝜌𝐵𝐸𝑖
2

𝜈𝑇𝑖 𝜈𝑖,

1 A full cycle is defined to consist of a charging half-cycle and a discharging
alf-cycle of the same depth.

2 The empirical stress function in [11] is 𝛷(𝜈𝑖) ∶=
∑𝑇

𝑡=1
𝜌
2
(𝜈𝑖,𝑡)𝜌𝑏 with the

coefficient 𝜌 = 2.03 [11].
𝑏
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Fig. 1. Examples of SoC profile with a full-cycle (left), without any full-cycle (middle)
and with a full-cycle of zero depth (right).

where 𝐵 is the unit capital cost per kilowatt-hour of storage capacity 𝐸𝑖,
and 𝑏𝑖 ∶= 𝜌𝐵𝐸𝑖 is a constant. In order to define a storage cost function
in terms of the storage charge–discharge rate vector 𝑢𝑖, we define a
piece-wise linear mapping from this rate vector 𝑢𝑖 to the corresponding
half-cycle depth vector 𝜈𝑖, as described in the following proposition.

Proposition 1. The total degradation cost 𝐶𝑖(𝑢𝑖) in (9a) is given by

𝐶𝑖(𝑢𝑖) =
𝑏𝑖
2
𝑢𝑇𝑖 𝑁(𝑢𝑖)𝑇𝑁(𝑢𝑖)𝑢𝑖. (10)

The matrix 𝑁(𝑢𝑖) is defined as

𝑁(𝑢𝑖) ∶= − 1
𝐸𝑖

𝑀(𝑥𝑖)𝑇𝐴†, (11)

where 𝐴† denotes the Moore–Penrose generalized inverse [19] of 𝐴 and 𝐴 is
defined following (4). The matrix 𝑀(𝑥𝑖) ∈ R(𝑇+1)×𝑇 is the incidence matrix
for the SoC profile 𝑥𝑖 [14] and satisfies

𝜈𝑖 = Rainf low(𝑥𝑖) = 𝑁(𝑢𝑖)𝑢𝑖 = 𝑀(𝑥𝑖)𝑇 𝑥𝑖. (12)

The proof is provided in [20].

Remark 1. The piece-wise linear and temporally coupled cost function
𝐶𝑖(⋅) is convex [11,14]. However, the cost function (10) is not differen-
tiable everywhere with respect to the storage rate 𝑢 due to its piece-wise
linear structure. At the point of non-differentiability we define all 𝑚
possible associated matrices for a given 𝑢 as 𝑁𝑘(𝑢), 𝑘 ∈ {1, 2,… , 𝑚} and
the following relation holds:

𝑁𝑘(𝑢)𝑢 = 𝑁(𝑢)𝑢 = 𝜈, ∀𝑘 ∈ {1, 2,… , 𝑚}.

See, e.g., [14] for more details.

Example 1. We illustrate this procedure for three sample SoC profiles
𝑥𝑙 , 𝑥𝑚, 𝑥𝑟 in Fig. 1. The Moore–Penrose generalized inverse of 𝐴 defined
in (4) for the profiles in Fig. 1 is given by:

𝐴† =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−4∕5 −3∕5 −2∕5 −1∕5
1∕5 −3∕5 −2∕5 −1∕5
1∕5 2∕5 −2∕5 −1∕5
1∕5 2∕5 3∕5 −1∕5
1∕5 2∕5 3∕5 4∕5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

The Rainflow cycle counting algorithm sequentially compares the
change in SoC between the points in the profile where it changes
its direction, i.e., starts charging after discharging or vice-versa. In
particular, for any three consecutive changes, the algorithm extracts
the full-cycle if the second one is the smallest among the three. After
extracting all the full-cycles, the profile has only half-cycles that cannot
form a full-cycle. See, e.g., [14] for more details. As shown in the
middle panel and right panels of Fig. 2, the SoC profile 𝑥𝑙 has a full-
cycle of depth 𝑥𝑙,1 − 𝑥𝑙,2, a charging half-cycle of depth 𝑥𝑙,3 − 𝑥𝑙,0 and a
discharging half cycle 𝑥𝑙,3 − 𝑥𝑙,4. Thus the associated incidence matrix
𝑀𝑙(𝑥𝑙) from the Rainflow cycle counting algorithm, as well as the
unique depth vector 𝜈 = 𝑀 (𝑥 )𝑇 𝑥 [14] for the SoC profile 𝑥 is given
3

𝑙 𝑙 𝑙 𝑙 𝑙
Fig. 2. Example SoC profile (left), its extracted full-cycle (middle) and half-cycles
(right).

by

𝑀𝑙(𝑥𝑙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −1 0
1 1 0 0
−1 −1 0 0
0 0 1 1
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜈𝑙 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑙,1 − 𝑥𝑙,2
𝑥𝑙,1 − 𝑥𝑙,2
𝑥𝑙,3 − 𝑥𝑙,0
𝑥𝑙,3 − 𝑥𝑙,4

⎤

⎥

⎥

⎥

⎥

⎦

(14)

Now, unlike the SoC profile 𝑥𝑙, the SoC profile 𝑥𝑚 in the middle
panel of Fig. 1 does not have any cycle. It contains a charging half-
cycle of depth 𝑥𝑚,3 − 𝑥𝑚,0 and a discharging half-cycle of depth 𝑥𝑚,3 −
𝑥𝑚,4. Similarly, the incidence matrix 𝑀𝑚(𝑥𝑚) from the Rainflow cycle
counting algorithm and the unique depth vector 𝜈𝑚 = 𝑀𝑚(𝑥𝑚)𝑇 𝑥𝑚 for
the SoC profile 𝑥𝑚 is given by

𝑀𝑚(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −1 0
0 0 0 0
0 0 0 0
0 0 1 1
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜈𝑚 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0

𝑥𝑚,3 − 𝑥𝑚,0
𝑥𝑚,3 − 𝑥𝑚,4

⎤

⎥

⎥

⎥

⎥

⎦

(15)

We attach zeros to both the incidence matrix 𝑀𝑚(𝑥𝑚) and depth
vector 𝜈𝑚 to keep the dimensions consistent. Substituting Eq. (13), (14),
(15) in Eq. (11), the associated matrix 𝑁𝑙(𝑢𝑙), 𝑁𝑚(𝑢𝑚) for the left and
middle panels are respectively given by

𝑁𝑙(𝑢𝑙) =
1
𝐸

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
0 1 0 0
−1 −1 −1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (16a)

𝑁𝑚(𝑢𝑚) =
1
𝐸

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
−1 −1 −1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (16b)

Here 𝑢𝑙 , 𝑢𝑚 denote the storage rate for the example SoC profiles in
the left and middle panel of Fig. 1 such that the depth vector follows

𝑁𝑙(𝑢𝑙)𝑢𝑙 =
1
𝐸

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑙,2
𝑢𝑙,2

−𝑢𝑙,1 − 𝑢𝑙,2 − 𝑢𝑙,3
𝑢𝑙,4

⎤

⎥

⎥

⎥

⎥

⎦

= 𝜈𝑙 (17a)

𝑁𝑚(𝑢𝑚)𝑢𝑚 = 1
𝐸

⎡

⎢

⎢

⎢

⎢

⎣

0
0

−𝑢𝑚,1 − 𝑢𝑚,2 − 𝑢𝑚,3
𝑢𝑚,4

⎤

⎥

⎥

⎥

⎥

⎦

= 𝜈𝑚. (17b)

Now, unlike the left and middle panels profile, the profile in the
right panel of Fig. 1 shows an interesting case as mentioned in Remark 1
with 𝑥𝑟,1 = 𝑥𝑟,2 or 𝑢𝑟,2 = 0. The profile 𝑥𝑟 has a full-cycle of depth
𝑥𝑟,1−𝑥𝑟,2 = 0, a charging half-cycle of depth 𝑥𝑟,3−𝑥𝑟,0 and a discharging
half-cycle of depth 𝑥𝑟,3 − 𝑥𝑟,4. In particular, for 𝑥𝑟,2 = 𝑥𝑟,1 ∓ 𝜖 for any
𝜖 → 0+ the associated matrices 𝑀𝑟(𝑥𝑟), 𝑁𝑟(𝑥𝑟) are given by 𝑀𝑙 , 𝑁𝑙 (resp.
𝑀 ,𝑁 ) whenever 𝑥 = 𝑥 − 𝜖 (resp. 𝑥 = 𝑥 + 𝜖) with 𝜖 → 0+.
𝑚 𝑚 𝑟,2 𝑟,1 𝑟,2 𝑟,1
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Hence, the depth vector can be computed in two ways using:

𝜈𝑟 = 𝑁𝑙(𝑢𝑙)𝑢𝑟 =
1
𝐸

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑟,2
𝑢𝑟,2

−𝑢𝑟,1 − 𝑢𝑟,2 − 𝑢𝑟,3
𝑢𝑟,4

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑁𝑚(𝑢𝑚)𝑢𝑟.

Therefore, the cost function 𝐶𝑟(𝑢𝑟) (10) becomes non-differentiable
ith respect to the storage rate 𝑢𝑟.

. Prosumer based market model

We next exploit the analytical expression for the cost of storage
egradation to evaluate whether the competitive equilibrium of par-
icipants bidding with the generalized linear supply function leads to
n efficient system dispatch that minimizes the social cost. For ease
f exposition we consider in this section the simplified setting where
he only constraint in the market clearing is (9b). However, our results
eneralize beyond this assumption, at the cost of a more involved
nalysis. We next define the bidding form, the market-clearing, and the
arket settlement as part of the market mechanism.

.1. Market mechanism

We first formulate the market mechanism where all the partici-
ants submit a linear supply function. Several approaches based on
linear supply function have been proposed to analyze participation

f generators in the market [21]. Here we extend this framework to
eterogeneous participants comprising both generators and storage. We
pecify the bid for generator 𝑗 as

𝑔𝑗 = 𝛼𝑗𝛩𝑗 (18)

nd the bid for storage 𝑖 as

𝑢𝑖 = 𝛽𝑖�̂�𝑖 . (19)

here 𝛩𝑗 ∈ R𝑇 and �̂�𝑖 ∈ R𝑇 denote the marginal prices aimed at in-
entivizing participation. These supply function bids are parameterized
y 𝛼𝑗 ≥ 0 and 𝛽𝑖 ≥ 0, which indicate the willingness of generator 𝑗 and
torage 𝑖 to produce at the price 𝛩𝑗 and �̂�𝑖, respectively. The market
perator collects the supply function bids from all the participants and
ssociates a cost function with generator 𝑗 that is given by

𝑇
∑

𝑡=1
∫

𝑔𝑗,𝑡

0
𝛩𝑗,𝑡𝜕𝑔𝑗,𝑡 =

𝑇
∑

𝑡=1
∫

𝑔𝑗,𝑡

0

1
𝛼𝑗

𝑔𝑗,𝑡𝜕𝑔𝑗,𝑡 =
1
2𝛼𝑗

𝑔𝑇𝑗 𝑔𝑗

as well as a cost function for storage unit 𝑖 that is given by
𝑇
∑

𝑡=1
∫

𝑢𝑖,𝑡

0
�̂�𝑖,𝑡𝜕𝑢𝑖,𝑡 =

1
2𝛽𝑖

𝑢𝑇𝑖 𝑢𝑖.

iven the bids (𝛼𝑗 , 𝑗 ∈ , 𝛽𝑖𝑖 ∈ ), the operator solves the economic
ispatch problem that minimizes total generation and storage costs to
eet inelastic demand 𝑑 ∈ R𝑇 :

YSTEM:

min
𝑢𝑖 ,𝑖∈ ,𝑔𝑗 ,𝑗∈

∑

𝑖∈

1
2𝛽𝑖

𝑢𝑇𝑖 𝑢𝑖 +
∑

𝑗∈

1
2𝛼𝑗

𝑔𝑇𝑗 𝑔𝑗 (20a)

s.t. (9b) (20b)

The optimal solution to the SYSTEM gives the dispatch and the market-
clearing prices for the participants at each time interval. More precisely,
the generator 𝑗 and the storage 𝑖 produce the dispatch quantities 𝑔𝑗
nd 𝑢𝑖 and are paid 𝛩𝑇

𝑗 𝑔𝑗 and �̂�𝑇
𝑖 𝑢𝑖 as part of the market settlement

espectively.
The individual prices 𝛩𝑗 and �̂�𝑖 are functions of dual variables

ssociated with operational constraints of generators and storage. In the
implified setting where only the power balance constraint is binding

= 𝜆 and �̂� = 𝜆.
4

𝑗 𝑖
In this paper, we consider the price-taking behavior of the gener-
tors and the storage with characteristics summarized below. A price-
aking assumption is usually evaluated as a benchmark in the sense that
f a market mechanism does not behave as desired under price-taking
ssumptions, it is unlikely to perform well otherwise.

efinition 1. A market participant is price-taking if it accepts the given
arket prices and cannot influence the prices in the market on its own.

The participants choose their bids to maximize their individual
rofit as defined below:

enerator Bidding Problem

max
𝑔𝑗

𝜋(𝜆, 𝑔𝑗 ) ∶=max
𝑔𝑗

𝜆𝑇 𝑔𝑗 −
𝑐𝑗
2
𝑔𝑇𝑗 𝑔𝑗 (21a)

=max
𝛼𝑗≥0

𝛼𝑗𝜆
𝑇 𝜆 − 𝛼2𝑗

𝑐𝑗
2
𝜆𝑇 𝜆 (21b)

Storage Bidding Problem

max
𝑢𝑖

𝜋(𝜆, 𝑢𝑖) ∶= max
𝑢𝑖

𝜆𝑇 𝑢𝑖 −
𝑏𝑖
2
𝑢𝑇𝑖 𝑁(𝑢𝑖)𝑇𝑁(𝑢𝑖)𝑢𝑖 (22a)

=max
𝛽𝑖≥0

𝛽𝑖𝜆
𝑇 𝜆 −

𝑏𝑖𝛽𝑖
2

2
𝜆𝑇𝑁(𝜆, 𝛽𝑖)𝑇𝑁(𝜆, 𝛽𝑖)𝜆 (22b)

here we have substituted the linear supply function bids (18), (19)
ith 𝛩𝑗 = �̂�𝑖 = 𝜆 respectively.

.2. Market equilibrium

We next define and characterize the competitive equilibrium under
hich none of the participants has any incentive to change its decision
hile the market is cleared.

efinition 2. Under price-taking assumptions we say the bids (𝛽𝑖, 𝑖 ∈
, 𝛼𝑗 , 𝑗 ∈ , 𝜆) form a competitive equilibrium if the following condi-

ions are satisfied:

(1) For each generator 𝑗 ∈ , the bid 𝛼𝑗 maximizes their individual
profit in the market

(2) For each storage element 𝑖 ∈ , the bid 𝛽𝑖 maximizes their
individual profit in the market

(3) The inelastic demand 𝑑 ∈ R𝑇 is satisfied with the market-
clearing prices 𝜆.

We first propose a lemma that will enable us to characterize the
competitive equilibrium in the market.

Lemma 1. For any 𝛽 ∈ R, 𝛽 > 0 and 𝜆 ∈ R𝑇 , the following holds

𝑁(𝛽𝜆) = 𝑁(𝜆).

The proof uses the fact that the scalar multiplier 𝛽 only scales the
input profile to the piece-wise linear map 𝑁 but the profile behav-
ior, i.e., charging–discharging characteristics remain unchanged. The
following proposition characterizes the competitive equilibrium.

Theorem 1. The competitive equilibrium of the prosumer based market
mechanism (20) is uniquely determined by:

𝛼𝑗 =
1
𝑐𝑗
, ∀𝑗 ∈  (23a)

𝛽𝑖 =
1
𝑏𝑖

𝜆𝑇 𝜆
𝜆𝑇𝑁(𝜆)𝑇𝑁(𝜆)𝜆

, ∀𝑖 ∈  (23b)

𝜆 = 𝛿𝑑, 𝛿−1 =

(

∑

𝑖∈

1
𝑏𝑖

𝑑𝑇 𝑑
𝑑𝑇𝑁(𝑑)𝑇𝑁(𝑑)𝑑

+
∑

𝑗∈

1
𝑐𝑗

)

(23c)
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The proof is provided in [20]. Though the market achieves unique
competitive equilibrium, the optimal decision parameter of the storage
is a temporally coupled function of the market-clearing prices unknown
to the participants beforehand. Moreover, the equilibrium achieved
requires restrictive conditions on the market to align its solution with
the social planner’s optimum as characterized in the next subsection. In
particular, the linear supply function bidding mechanism fails to reflect
the true cost of storage participation even in the simple market setting.

3.3. Social welfare misalignment

We next characterize the gap between the market equilibrium and
social optimum in the following theorem.

Theorem 2. The competitive equilibrium (𝑔∗𝑗 , 𝑗 ∈ , 𝑢∗𝑖 , 𝑖 ∈  , 𝜆∗) for the
YSTEM (20) solves the SOCIAL PLANNER (9) if and only if there exists
onvex coefficients 𝛾𝑘 ≥ 0,

∑𝑚
𝑘=1 𝛾𝑘 = 1, such that the following holds

𝑚
∑

𝑘=1
𝛾𝑘𝑁

𝑇
𝑘 (𝑑)𝑁𝑘(𝑑)𝑑 =

𝑑𝑇𝑁(𝑑)𝑇𝑁(𝑑)𝑑
𝑑𝑇 𝑑

𝑑. (24)

Proof. Since the social planner problem (9) is convex and all the
constraints are affine, linear constraint qualification is satisfied and the
associated KKT conditions are both sufficient and necessary. Given that
(𝑔∗𝑗 , 𝑗 ∈ , 𝑢∗𝑖 , 𝑖 ∈  , 𝜆∗) also solves the social planner problem, the set
of the solution must satisfy the KKT conditions given by:

𝑐𝑗𝑔
∗
𝑗 = 𝜆∗, ∀𝑗 ∈  (25a)

𝑚
∑

𝑘=1
𝛾𝑘𝑏𝑖𝑁𝑘(𝑢∗𝑖 )

𝑇𝑁𝑘(𝑢∗𝑖 )𝑢
∗
𝑖 = 𝜆∗, ∀𝑖 ∈  . (25b)

long with the primal feasibility constraints given by (9b). Here 𝛾𝑘, 𝑘 ∈
1, 2,… , 𝑚} are the convex coefficient such that (25b) also holds at
he non-differentiable optimal solution 𝑢∗𝑖 . Since 𝑢∗𝑖 = 𝛽𝑖𝜆∗,∀𝑖 ∈  we
ewrite (25b) as

𝜆∗ =
𝑚
∑

𝑘=1
𝛾𝑘𝑏𝑖𝑁𝑘(𝜆∗)𝑇𝑁𝑘(𝜆∗)𝑢∗𝑖 , ∀𝑖 ∈  . (26)

Also from the competitive equilibrium in Theorem 1 we have

𝜆∗ = 1
𝛽𝑖
𝑢∗𝑖 = 𝑏𝑖

𝜆∗𝑇 𝑁(𝜆∗)𝑇𝑁(𝜆∗)𝜆∗

𝜆∗𝑇 𝜆∗
𝑢∗𝑖 , ∀𝑖 ∈  (27)

ere 𝑁(𝜆∗)𝑢∗𝑖 = 𝑁𝑘(𝜆∗)𝑢∗𝑖 for any 𝑘 ∈ {1, 2,… , 𝑚}, recall Remark 1. Now
combining Eqs. (26) and (27) we have the following relation ∀𝑖 ∈ 

𝑚
∑

𝑘=1
𝛾𝑘𝑏𝑖𝑁𝑘(𝜆∗)𝑇𝑁𝑘(𝜆∗)𝑢∗𝑖 = 𝑏𝑖

𝜆∗𝑇 𝑁(𝜆∗)𝑇𝑁(𝜆∗)𝜆∗

𝜆∗𝑇 𝜆∗
𝑢∗𝑖

⟺

𝑚
∑

𝑘=1
𝛾𝑘𝑁𝑘(𝜆∗)𝑇𝑁𝑘(𝜆∗)𝜆∗ =

𝜆∗𝑇 𝑁(𝜆∗)𝑇𝑁(𝜆∗)𝜆∗

𝜆∗𝑇 𝜆∗
𝜆∗

⟺

𝑚
∑

𝑘=1
𝛾𝑘𝑁𝑘(𝑑)𝑇𝑁𝑘(𝑑)𝑑 =

𝑑𝑇𝑁(𝑑)𝑇𝑁(𝑑)𝑑
𝑑𝑇 𝑑

𝑑,

here the second last equality holds due to 𝑢∗𝑖 = 𝛽𝑖𝜆∗ and the last
quality holds due to the relation 𝜆∗ = 𝛿𝑑 from (23). □

While the linear supply function bidding mechanism does reflect the
uadratic cost function for generators,3 in general it fails to reflect the

incentive of storage unit in the market as the associated condition (24)
may not hold. As an example where this condition holds, consider
a market with 2 time periods 𝑡 = {1, 2} and the inelastic demand

3 For the generator cost function in (9a) with 𝑐𝑗 ≠ 0, 𝑎𝑗 ≠ 0, a time
ependent bid 𝛼 (𝑡) ∈ R𝑇 can be used to reflect a general cost function.
5

𝑗 t
𝑑 = 𝑑0[1, 1]𝑇 such that 𝑑0 ∈ R+. Since 𝑢 ∝ 𝑑 at the market equilibrium,
the only associated matrix 𝑁 =

( 1 1
0 0

)

, such that

𝑁(𝑑)𝑇𝑁(𝑑)𝑑 =
(

1 1
1 1

)

𝑑 =
(

2𝑑0
2𝑑0

)

𝑑𝑇𝑁(𝑑)𝑇𝑁(𝑑)𝑑
𝑑𝑇 𝑑

𝑑 =
4𝑑20
2𝑑20

𝑑 = 𝑁(𝑑)𝑇𝑁(𝑑)𝑑.

This misalignment between the market equilibrium and the social
ptimum motivates our mechanism design in the next section.

. Cycle aware market model

In this section we propose a new market mechanism that incen-
ivizes both generators and storage to bid in a manner that reflects their
rue cost under price-taking assumptions.

.1. Market mechanism

We consider generators that provide the linear supply function
ids defined in (18) and generalize this idea to propose an energy-
ycling function bid for storage. In particular, the price-taking storage
indicates the schedule of cycle depths as function of per-cycle prices
iven by

𝜈𝑖 = 𝛽𝑖𝜃𝑖 . (28)

ere 𝜃𝑖 ∈ R𝑇 are per-cycle prices aimed at incentivizing storage
articipation. This function is parameterized by a constant 𝛽𝑖 ≥ 0 and
ndicates all the charging or discharging half-cycle depths 𝜈𝑖 the storage
s willing to undergo at the price 𝜃𝑖. With per-cycle prices 𝜃𝑖 from the

market, the storage unit 𝑖 can choose its bid in order to maximize its
profit, which as function of the bid 𝛽𝑖, is given by:

𝜋𝑢𝑖 (𝛽𝑖, 𝜃𝑖) =𝜃
𝑇
𝑖 𝜈𝑖 −

𝑏𝑖
2
𝑢𝑇𝑖 𝑁(𝑢𝑖)𝑇𝑁(𝑢𝑖)𝑢𝑖 = 𝜃𝑇𝑖 𝜈𝑖 −

𝑏𝑖
2
𝜈𝑇𝑖 𝜈𝑖

=𝛽𝑖𝜃𝑇𝑖 𝜃𝑖 −
𝑏𝑖𝛽2𝑖
2

𝜃𝑇𝑖 𝜃𝑖, (29)

where we used (28) and (12) to obtain (29). A price-taking storage
owner seeks to maximize (29), i.e., find 𝛽𝑖 that satisfies:

𝜕𝜋𝑢𝑖
𝜕𝛽𝑖

=
(

1 − 𝑏𝑖𝛽𝑖
)

𝜃𝑇𝑖 𝜃𝑖 = 0 ⟹ 𝛽𝑖 =
1
𝑏𝑖
, ∀𝑖 ∈  (30)

Thus, this cycle aware market mechanism leads to an optimal bid 𝛽𝑖
that is not only independent of prices in the market but also truthful.

We now illustrate a cycle aware market-clearing where both gener-
ator and storage are incentive compatible and market aligns with social
planner’s problem while satisfying the demand. In this setting, the
market operator collects supply function bids from all the participants
and solves the following economic dispatch problem that minimizes the
total cost of generator and storage dispatch:

CYCLE AWARE SYSTEM:

min
(𝑢𝑖 ,𝜈𝑖),𝑖∈ ,𝑔𝑗 ,𝑗∈

∑

𝑖∈

1
2𝛽𝑖

𝑣𝑇𝑖 𝑣𝑖 +
∑

𝑗∈

1
2𝛼𝑗

𝑔𝑇𝑗 𝑔𝑗 (31a)

s.t. 𝑣𝑖 = 𝑁(𝑢𝑖)𝑢𝑖, 𝑖 ∈  (31b)
(1), (2), (6), (8), (9b)

where (31b) implements the Rainflow algorithm. The optimal solution
to cycle aware system (31) gives the dispatch and two set of prices.
More precisely as part of the market settlement, generator 𝑗 produces
𝑔𝑗 and gets paid 𝛩𝑇

𝑗 𝑔𝑗 where

𝛩𝑗 = 𝜆 + 𝜂
𝑗
− 𝜂𝑗 .

Here 𝜂
𝑗
, 𝜂𝑗 are the dual variables associated with the generator capacity

onstraint (1) and the vector 𝜆 denotes the market-clearing prices or
he dual variable associated with the constraint (9b). The storage unit
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𝑖 produces a cycle depth schedule 𝜈𝑖 and gets paid 𝜃𝑇𝑖 𝜈𝑖 with the prices
𝜃𝑖 given by the dual variable associated with the constraint (31b).

The piece-wise linear constraint (31b) makes the dispatch prob-
lem (31) non-convex and challenging to solve numerically. However,
substituting the rainflow constraint (31b) in the cost function objec-
tive (31a) leads to an equivalent convex optimization problem that can
be solved by the convex programming as formalized in the following
proposition.

Proposition 2. Any locally optimal solution (𝑔𝑗 , 𝑗 ∈ , 𝑢𝑖, 𝑖 ∈  , 𝜈𝑖, 𝑖 ∈
 , 𝜆, 𝜃𝑖, 𝑖 ∈ ) of the cycle aware system (31) is also a globally optimal
solution.

The proof is provided in [20]. The equivalent convex problem
formulation ensures that the optimal dispatch and clearing prices are
incentive compatible [14]. We discuss the competitive equilibrium in
such a market in the next subsection.

4.2. Market equilibrium

We next redefine and characterize the competitive equilibrium of
the market competition under the proposed mechanism.

Definition 3. Under the price-taking assumptions, the bids (𝛽𝑖, 𝑖 ∈
 , 𝛼𝑗 , 𝑗 ∈ ) form a competitive equilibrium if the following conditions
are satisfied:

(1) For each generator 𝑗 ∈ , the bid 𝛼𝑗 maximizes their individual
profit in the market

(2) For each storage element 𝑖 ∈ , the bid 𝛽𝑖 maximizes their
individual profit in the market

(3) For each storage element 𝑖 ∈ , the Rainflow constraint is
satisfied with per-cycle prices 𝜃𝑖.

(4) The inelastic demand 𝑑 ∈ R𝑇 is satisfied with the market-
clearing prices 𝜆.

The following is our main result and highlights the alignment of
proposed market mechanism with the social planner’s problem.

Theorem 3. The competitive equilibrium of the cycle aware market
mechanism (31) also solves the SOCIAL PLANNER problem (9).

Proof. Under price-taking assumptions, given prices (𝛩𝑗 , 𝑗 ∈ ) from
the market-clearing (31), the optimal bid is given by

𝜕𝜋𝑔𝑗
𝜕𝛼𝑗

= 𝜕
𝜕𝛼𝑗

(

𝛩𝑗
𝑇 𝑔𝑗 −

𝑐𝑗
2
𝑔𝑇𝑗 𝑔𝑗

)

= 0 ⟹ 𝛼𝑗
∗ = 1

𝑐𝑗
.

and for (𝜃𝑖, 𝑖 ∈ ) the optimal decision parameter from (30) is given by

𝛽∗𝑖 = 1
𝑏𝑖
,∀𝑖 ∈  .

Therefore using the optimal solution of (31) from Proposition 2 along
with the optimal bid of participants given by (𝛽∗𝑖 , 𝑖 ∈  , 𝛼∗𝑗 , 𝑗 ∈ ),
we recover the social planner problem (9). Hence the competitive
equilibrium of (31) also solves the SOCIAL PLANNER problem. □

We end by noting that, although the cycle aware system in (31)
may have non-unique optimal schedule 𝑢∗𝑖 and 𝜃∗𝑖 due to the piece-wise
linear rainflow constraint (31b), the cycle aware market mechanism
aligns with the social planner problem, and any such solution will be
optimal. We further note that the additional assumption of uniform
pricing leads to the set of unique optimal schedule and prices. This case
is not discussed further here, due to page limits.
6

Fig. 3. (Top) social cost and (Bottom) cycling cost in the Cycle based mechanism
(CBM), Prosumer based mechanism (PBM) and Generation centric dispatch (GCD) w.r.t
storage capital cost and storage capacity.

5. Numerical simulation

In this section we provide a numerical example comparing the
competitive equilibrium of the Prosumer based market mechanism
(PBM) and the Cycle based market mechanism (CBM). We use ag-
gregate demand data of the Millwood Zone operated by the NYISO
(date: 8/10/2020) [22]. For ease of analysis we assume one generator
and one aggregate storage unit. The aggregate cost coefficients of the
generator are 𝑐 = 0.1$∕(MW)2 and 𝑎 = 20$∕MW in Eq. (9a) [23] and
the empirical cost coefficients of the quadratic cycle stress function is
𝜌 = 5.24×10−4 [11]. The generation has sufficient capacity to meet the
demand, i.e. 𝑔 = 0 and 𝑔 ≥ max𝑡{𝑑𝑡}. The storage rate limits are given
by 𝑢 = 𝐸

4 and 𝑢 = −𝐸
4 , which corresponds to storage requiring four

hours (slots) to completely charge or discharge.
We use a canonical Generation Centric Dispatch (GCD) model in

which market accounts for only generation cost i.e. disregarding stor-
age degradation cost from the objective function leading to a cycle
unaware dispatch strategy as a benchmark case. This hidden cycling
cost is calculated from the storage SoC profile of the optimal solution.
These costs are then added to the cost function value to compute the
total social cost, i.e. social cost = generation cost + (hidden) cycling
cost.

Fig. 3 illustrates the social cost and cycling cost of storage as we (a)
increase the storage capital cost given a fixed storage capacity and (b)
increase the storage capacity given a fixed storage capital cost. In the
top panel of Fig. 3(a) we fix the storage capacity to be 𝐸 = 100 MWh.
As expected the social cost increases with the capital cost and our
proposed CBM gives the lowest social cost, while GCD has the highest
costs as it does not account for cycling costs in the optimization. The
bottom panel in Fig. 3(a) shows the cycling cost of storage under the
three mechanisms. As expected GCD utilizes the storage without any
restrictions leading to higher cost. Since the PBM overestimates the cost
of storage, it leads to more restrictive use of storage and hence lower
cycling cost compared to CBM. Although CBM incurs higher storage
cost, the incentive compatibility allows it to reduce the total social cost.

In Fig. 3(b) we fix the storage capital cost to be 𝐵 = 200$∕kWh [24]
and increase storage capacity. The social cost decreases with the storage
capacity for CBM and PBM. Thus the benefits of accounting for degrada-
tion increase when storage capacity increases (top panel of Fig. 3(b)).
Further, not accounting for storage cost, as in GCD, leads to overall
higher social cost. This is because as the capacity increases, storage can
supply the required power with fewer or (relatively) shallower cycles,
thus decreasing the social cost of CBM and PBM. The cycling cost is
shown in the bottom panel in Fig. 3(b).
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Fig. 4. Storage profit in the Cycle based mechanism (CBM), Prosumer based mechanism
(PBM) and Generation centric dispatch (GCD) w.r.t storage capital cost and storage
capacity.

Fig. 4 compares the profit of the storage as we increase the storage
capital cost and increase the storage capacity respectively. In Fig. 4(a)
we fix the storage capacity to be 𝐸 = 100 MWh whereas in Fig. 4(b) we
fix storage capital cost to be 𝐵 = 200$∕kWh. As expected storage earns
more profit in CBM as compared to PBM due to realistic representation
of cost of storage degradation. The GCD leads to losses for the storage
due to the large unaccounted for cycling cost of storage. As storage
capital cost decreases or the storage capacity increases, storage incurs
lower degradation cost while earning more profit at the peak period.

6. Conclusions

In this paper, we study the incentive of generators and storage
units via market equilibrium analysis. We first analyze a prosumer
based market mechanism where both generators and storage bid linear
supply functions. Under the price-taking assumptions, the competitive
equilibrium in such a market requires restrictive conditions to align
with the social optimum. Furthermore, the optimal bid of storage is a
temporally coupled function of market prices which is not desirable. To
address these shortcomings, we propose a novel energy-cycling function
for storage where storage bids cycle depths as a function of per-cycle
prices. This type of storage bidding function along with a linear supply
function for generators incentivizes the participants to reflect their true
cost in the market i.e. the competitive equilibrium in such a market
minimizes the social cost. Numerical examples illustrate the importance
of conveying storage owner incentives to market operators to achieve
social welfare.

Broadly, electricity markets are designed via two-stage market [25,
26]. The first stage is cleared the day before (day-ahead market), and
the second a few minutes before the actual schedule time (real-time).
The proposed mechanism is suitable for the day-ahead markets with a
demand forecast for the entire horizon. At any given instance, the cy-
cling cost of storage depends upon both the SoC profile trajectory so far,
and future quantities such as prices and demand, making its extension
to the real-time markets non-trivial. Moreover, network constraints and
the distribution of the storage capacity over the network will certainly
affect the profitability and cycling opportunities for storage devices. We
leave extensions to these settings for future work.
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