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Abstract— In this paper, we formulate a cycling cost aware
economic dispatch problem that co-optimizes generation and
storage dispatch while taking into account cycle based storage
degradation cost. Our approach exploits the Rainflow cycle
counting algorithm to quantify storage degradation for each
charging and discharging half-cycle based on its depth. We
show that the dispatch is optimal for individual participants in
the sense that it maximizes the profit of generators and storage
units, under price taking assumptions. We further provide a
condition under which the optimal storage response is unique
for given market clearing prices. Simulations using data from
the New York Independent System Operator (NYISO) illustrate
the optimization framework. In particular, they show that the
generation-centric dispatch that does not account for storage
degradation is insufficient to guarantee storage profitability.

I. INTRODUCTION

The power system is undergoing rapid changes due to
increased penetration of renewable energy sources and the
desire for a reduced carbon footprint. However, the inter-
mittency of popular renewable sources, e.g., solar and wind
energy, coupled with new variations in load patterns due
to demand-side management and devices such as electric
vehicles, are affecting system reliability [1]–[3]. Energy stor-
age systems (ESS) have been widely proposed as means to
provide the grid services required to maintain grid reliability
and power quality [4]–[7].

Lithium-ion based battery storage is one of the fastest
growing storage modalities for the power grid. [8]. However,
in contrast with traditional generators, the cost of dispatching
storage cannot be directly quantified in terms of supplied
power alone. For example, degradation due to numerous
charging and discharging half-cycles plays an important role
in the operational cost associated with battery storage [9],
[10]. However, these and other storage specific costs are not
currently accounted for in market settlements and negatively
affect the profitability of storage [11].

A number of storage degradation models that enable
equipment owners to account for storage degradation in their
cost/benefit analysis have been proposed [12], [13]. The most
widely used are cycle-based degradation models that quantify
the cost of each half-cycle (i.e. charging or discharging)
based on its depth, defined as the ratio of the energy charged
(or discharged) to the capacity of the storage. These models
are generally combined with the Rainflow cycle counting
algorithm, which extracts charging and discharging half-
cycles from a storage State of Charge (SoC) profile. Several
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approaches based on the Rainflow algorithm have been
proposed to incorporate storage degradation into storage
operators market participation strategies [9], [14]–[16]. Al-
though these solutions account for the intrinsic degradation
of storage actions, they require mapping SoC profiles into
actionable energy buy/sell decisions for each time slot, which
makes any guarantee of efficiency or optimality, at best, an
approximate statement [17].

This paper seeks a different approach. Instead of mapping
storage degradation into a sequence of buy and sell energy
transactions to be submitted to the market, we argue that it
is better to formulate a market that intrinsically allows for
storage units to participate in it. To this end, we formulate an
economic dispatch problem, that takes into account the cost
of a storage in terms of the degradation it incurs. For concrete
insights, our formulation simply considers one generator unit
and one storage unit. However, our results do not critically
depend on this assumption. Using this formulation, and lever-
aging recent results on convexity of cycle-based degradation
cost [16], we show that, not only it is possible to efficiently
find a storage and generation scheduling that minimizes
the overall operational cost, but also that such scheduling
is optimal from the viewpoint of individual participants.
More precisely, by means of dual decomposition, we show
that, under price taking assumptions, the obtained allocation
is incentive compatible, i.e., it simultaneously maximizes
individual profit of both the generator and the storage.

Our work also provides a novel formulation of the Rain-
flow algorithm that analytically represents its input-output
relation as a piece-wise linear map from the SoC profile
to half-cycle depths. This mapping further allows a repre-
sentation in terms of graph incidence matrices where nodes
represent time slots and edges describe charge or discharge
half-cycles. Using this reformulation, we provide conditions
on the incidence matrix under which the optimal storage
response is unique for given market clearing prices. Numer-
ical simulations illustrate the importance of accounting for
storage cycling cost in the economic dispatch problem by
comparing the total cost of operation for different storage
sizes and storage capital costs obtained under the traditional
(generation centric) dispatch to those of the proposed storage
degradation aware dispatch.

The rest of the paper is organized as follows. In Section
II, we define the economic dispatch problem and formulate
the optimal response problems for individual participants
given market clearing prices. In Section III, we introduce
the storage cost model. The structural results of the economic
dispatch problem that feature the optimality of dual decom-
position and the uniqueness of storage response to market
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clearing prices are presented in Section IV. Numerical anal-
ysis and conclusions are provided in Sections V and VI,
respectively.

Notation: Given a set S of time indices S ⊆ {0, . . . ,T},
S[ j] denotes the jth smallest element in S, e.g., S = {3,1,5},
S[2] = 3. Given a vector x = (x0, . . . ,xT ) ∈ RT+1 and the
set S ⊆ {0, . . . ,T}, xS ∈ R|S| denotes the order preserving
vector of elements indexed by S (preserving x order). We
define the element xS( j) := xS[ j], for example, for the same
set S = {3,1,5}, xS(2) = xS[2] = x3. For a vector xS and an
index j ∈ {2,3, · · · , |S|− 2}, we define the triple difference
operation

(∆ j−1,∆ j,∆ j+1) := diff(x,S, j)

with ∆ j := |xS( j+1)−xS( j)|, which will be used to identify
cycles. We next define a direction operation pointing from
t1 to t2, which will be used in adding (directed) edges to
a directed graph (digraph). For a vector xS and an index
j ∈ {1,2, · · · , |S|−1} as

(t, t ′) := dir(x,S, j)=

{ (
S[ j+1],S[ j]

)
, if xS( j+1)≥ xS( j)(

S[ j],S[ j+1]
)
, otherwise.

For a set S′ of ordered time index pairs S′ ⊆ {0, . . . ,T}×
{0, . . . ,T}, (t, t ′) ∈ S′ denotes an ordered pair from t to t ′.

II. PROBLEM FORMULATION

A. Economic Dispatch

We consider a simple case with one generator, one storage
element and inelastic demand to gain analytical insights, but
all of the results can be generalized. Suppose the generator
is able to output gt amount of power at time t subject to
capacity constraints

g≤ gt ≤ g, t ∈ {1,2, . . . ,T}, (1)

where g and g denote the minimum and maximum gen-
eration limits, respectively. We use g ∈ RT to denote the
generation profile. Similarly the demand profile is defined
as D ∈ RT , where Dt denotes the inelastic demand at time
t ∈ {1,2, ...,T}.

To account for temporally interdependent storage op-
eration, a multi-slot storage degradation aware economic
dispatch problem (SDAD) is formulated. The SDAD problem
minimizes the total cost of the generator and storage over the
horizon while satisfying the given demand profile D, subject
to their respective operational constraints:

min
g,u,x

αggT g+βg1T g+Cs(x) (2a)

s.t. (1), (u,x) ∈S

D+u = g (2b)

where the first two terms in the objective function (2a)
represent a standard quadratic cost function for the generator
with constant coefficients αg > 0 and βg > 0. CS(x) represents
the cycling cost of storage and the set S represents the
operational constraint of the storage unit, defined explicitly
below. Equation (2b) enforces the power balance.

B. Storage Operation Model

We next characterize the explicit storage operation con-
straints that define the set S . Consider a storage element
of capacity E, for which the amount of energy stored over
a time horizon {0,1, . . . ,T} is described by a SoC profile
x ∈RT+1 with the initial SoC x0 = xo. The SoC at each time
t (xt ) is normalized with respect to E such that

0≤ xt ≤ 1, t ∈ {0,1, . . . ,T}. (3)

The charging and discharging rates are denoted by u ∈
RT where ut > 0 (resp. ut < 0) represents charging (resp.
discharging) at time t ∈ {1, ..,T}. We assume the rate u is
bounded by the power rating of the device(s)

u≤ ut ≤ u, t ∈ {1,2, . . . ,T}. (4)

The SoC evolves according to

xt = xt−1 +
1
E

ut , t ∈ {1,2, . . . ,T},

which can be rewritten as

Ax =
1
E

u, (5)

where A ∈ RT×(T+1) is the lower triangular matrix

A =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −1 1

 .

For ease of exposition, we have assumed that the storage
operation is lossless and the charging or discharging effi-
ciency is 1. We leave extension to the more general case as
a direction for future work. Without loss of generality, we
further require that the storage returns to its initial SoC after
a complete operation over the time horizon, i.e.,

xT e1 = xT eT+1 = xo, (6)

where e1 := [1 0 · · ·0]T and eT+1 := [0 · · ·0 1]T are the
standard basis vectors in RT+1. The operational constraint
set is then given by S = {(u,x) : (3), (4), (5), (6)}.

C. Individual Subproblems

In addition to the optimal dispatch (g∗,u∗,x∗) obtained
through the solution of (2), we are also interested in the
incentive compatibility of individual participants, i.e., the
willingness of the generator and the storage to participate in
the dispatch problem. Formally, we are interested in finding a
set of prices p∈RT such that the optimal schedule found by
(2) is also optimal with respect to the following participant
problems, which respectively maximize their profits.
Generator Subproblem:

max
g

pT g−αggT g−βg1T g (7a)

s.t. (1) (7b)

Storage Subproblem:

max
u,x

−pT u−Cs(x) (8a)
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s.t. (u,x) ∈S (8b)

where the first term in the objective function (7a) and (8a)
represent the revenue from the market.

The additional requirement of ensuring that the solution of
the SDAD is also optimal with respect to providing solutions
to (7) and (8), makes the problem of finding this prices
challenging. The next section describes a means to obtain an
analytical expression for storage cycling cost which will then
be exploited to obtain the incentive compatible economic
dispatch.

III. STORAGE COST MODEL

A. Rainflow Algorithm Based Cycling Cost

The operational cost of a storage is primarily associated
with the degradation incurred during each cycle. Here we
adopt the model [16] that uses a cycle stress function Φ(·) :
[0,1] 7→ [0,1] to quantify the normalized capacity degradation
incurred by each charging or discharging half-cycle as a
function of the cycle depth. A full cycle that consists of both
charging and discharging half-cycles of the same depth di
then incurs a degradation of 2Φ(di). We adopt the empirically
convex stress function Φ(di) of the form

Φ(di) :=
αb

2
dβb

i

with coefficients αb > 0 and βb > 1 [16].
Given a vector d ∈ RT that summarizes the depths of

all half-cycles1 in the time horizon {0,1, . . . ,T}, the total
cycling cost of storage is given by

Cs(d) = BE
( T

∑
i=1

Φ(di)

)
, (9)

where B is the unit capital cost per kilowatt-hour of storage
capacity. BE therefore amounts to the storage replacement
cost. Cs(·) : RT 7→ R denotes the cycling cost function in
terms of half-cycle depths.

In order to map the SoC profile x to cycle depths d we
introduce a cycle identification approach (Algorithm 1) based
on the Rainflow algorithm [18]. In addition to the vector
of half-cycle depths d, our algorithm outputs a set S f of
ordered time index pairs, which are used to compute the
cycle depth of full-cycles from x, and a residual set Sr of time
indices, which are used to compute residual individual half-
cycle depths from x. While the sets S f and Sr are not standard
outputs of the Rainflow algorithm, they will be particularly
useful in our reformulation of the Rainflow algorithm as a
piece-wise affine map.

The main stages of our version of the Rainflow algorithm
follow:
• (Switching Time Identification): Starting with Sr =
{0,T}, traverse x from x0 to xT and store in Sr the
time indices where the profile x changes direction,
e.g., switches between charging and discharging. This
procedure comprises steps 1-5 in Algorithm 1.

1In order to maintain a fixed-size vector d we fill in zero-depth half-cycles
at the tail when there are less than T half-cycles.

• (Full Cycle Extraction): Looping through j = 2 : |Sr|−2,
compute the net SoC changes between four consecutive
switching points, i.e., (∆ j−1,∆ j,∆ j+1) := diff(x,Sr, j).
If ∆ j−1 ≥ ∆ j and ∆ j+1 ≥ ∆ j, extract a full cycle of
depth ∆ j i.e., remove Sr[ j] and Sr[ j + 1] from Sr and
add dir(x,Sr, j) to S f . The extracted charging and dis-
charging half-cycle of depth ∆ j is added into the cycle
depth vector d. This stage is described in steps 7-17 of
Algorithm 1.

• (Half-cycle Extraction): Once all full cycles are ex-
tracted, iterate through j = 1 : |Sr|−1 to add the depths
of all remaining half-cycles. This stage is described in
steps 18-20 of Algorithm 1.

We illustrate this procedure using an example SoC profile
shown in Fig. 1. After steps 1-5 we start with sets Sr =
{0,1,2,3} and S f = /0. Since ∆1 ≥ ∆2 and ∆3 ≥ ∆2, with
(∆1,∆2,∆3) := diff(x,Sr,2), a full cycle of depth x1− x2 is
extracted (see the center panel of Fig. 1). This operation
leaves the residual charging half-cycle from x0 to x3, shown
in the right panel of Fig. 1. The output of the algorithm is
then d = [x1− x2,x1− x2,x3− x0]

T , Sr = {0,3}, and S f =
{(1,2)}.

Fig. 1: An example of an SoC profile, its extracted full cycle,
and the residual half-cycle from left to right.

B. Incidence Matrix Representation of Rainflow Algorithm

We now illustrate how the Rainflow algorithm can be
represented by the piece-wise linear map from the SoC
profile x to the cycle depth vector d:

d = Rain f low(x) = M(x)T x. (10)

Here M(x) ∈ R(T+1)×T is an incidence matrix for a x-
dependent directed graph G (x) := G (x;V ,E ), with rows
and columns representing nodes in V and edges in E ,
respectively. We represent the (i, j)th element of M(x) as
Mi j(x), or just Mi j if its dependence on x is clear from the
context. The graph G (x) consists of T +1 nodes, indexed by
t ∈ {0,1, . . . ,T}.

Algorithm 2 provides the procedure for finding the edges
of G (x), which is summarized as follows.
• Each full cycle identified by Algorithm 1 corresponds

to an element (t1, t2) ∈ S f . For each of these cycles
add (t1, t2) to the edge set E twice, i.e. E = E ∪
{(t1, t2),(t1, t2)}, as outlined in steps 1-3 in Algorithm 2.

• Using the residual set Sr output from Algorithm 1 and
the direction operation dir(x,Sr, j), iterate through j =
1 : |Sr|− 1 to add one directed edge, corresponding to
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Algorithm 1: Rainflow Cycle Counting

Result: vector d ∈ RT , sets S f and Sr
Input: SoC Profile x
Initialize: Sr = {0,T}, S f = /0, d =~0, counter k = 1

1 for t = 1 : T −1 do
2 if sgn(xt+1− xt) ==−sgn(xt − xt−1) then
3 Sr = Sr +{t};
4 end
5 end
6 Cycle = true;
7 while Cycle == true and |Sr|> 3 do
8 Cycle = false;
9 for j = 2 : |Sr|−2 do

10 (∆ j−1,∆ j,∆ j+1) = diff(x,Sr, j);
11 if ∆ j−1 ≥ ∆ j, and ∆ j+1 ≥ ∆ j then
12 Sr =Sr−{Sr[ j],Sr[ j+1]},

S f =S f +dir(x,Sr, j) ;
13 d(k) = d(k+1) = ∆ j and k = k+2;
14 Cycle = true, and restart from step 7;
15 end
16 end
17 end
18 for j=1:|Sr|−1 do
19 d( j+ k−1) = |xSr( j+1)− xSr( j)|;
20 end

each half-cycle to connect nodes Sr[ j] and Sr[ j+1]. See
steps 4-6 in Algorithm 2.

We illustrate this for an example in left panel of Fig. 2. Given
(x0, . . . ,x5), there are two cycles with depth x3−x2 and x1−
x4. The output of Algorithm 1 would be S f = {(3,2),(1,4)},
Sr = {0,5}, and d = [x3−x2,x3−x2,x1−x4,x1−x4,x5−x0]

T .
This leads to E = {(3,2),(3,2),(1,4),(1,4),(5,0)}, shown
in the right panel of Fig. 2.

Algorithm 2: Rainflow Incidence Matrix M

Result: Incidence Matrix M(x) ∈ R(T+1)×T

Input: SoC profile x, sets Sr and S f
Initialize: Digraph G (x;V ,E ), V = [0, . . . ,T ], E = /0

1 for i =1:|S f | do
2 E = E ∪{S f [i],S f [i]};
3 end
4 for j=1:|Sr|−1 do
5 E = E +dir(x,Sr, j);
6 end
7 Define M(x) as the incidence matrix for G and attach

zero columns as necessary.

We specify the incidence matrix M(x) of the graph G (x)
such that the edges are indexed according to the order in
which they are added. Then zero columns are attached to fill
in the remainder of the incidence matrix such that M(x) ∈
R(T+1)×T always holds. For example, the incidence matrix

Fig. 2: An example of SoC profile and its associated graph.

for the example SoC profile in Fig. 2 is

M(x) =



0 0 0 0 −1
0 0 1 1 0
−1 −1 0 0 0
1 1 0 0 0
0 0 −1 −1 0
0 0 0 0 1


.

We can now explicitly express the total storage cycling cost
(9) in terms of the SoC profile x as

Cs(x) =
αbBE

2

T

∑
i=1

(di)
βb =

αbBE
2

T

∑
i=1

T+1

∑
j=1

M jix j−1

βb

. (11)

where we basically substitute (10) in (9). Temporal coupling
arises through the dependence of the incidence matrix M(x)
on the SoC profile x.

IV. STRUCTURAL RESULTS

The piece-wise polynomial structure of the cost function
(11) makes it challenging to solve (2) even numerically.

In this section we show that not only it is possible to
efficiently solve (2), but also by setting the price vector p
equal to the optimal Lagrange multiplier λ ∗ associated with
(2b), the solution to (2) is also optimal w.r.t. the generator
and storage subproblems (7) and (8), thus achieving incentive
compatibility. We end this section by discussing uniqueness
of (8).

A. Convexity of Cycling Cost

Our results build on the fact that under mild assumptions,
the cycling cost function Cs(x) in (11) is convex [16].

Theorem 1 (Cycling Cost Convexity [16]). For a given
convex stress function Φ, the cycling cost function Cs(x) (11)
is convex with respect to the SoC profile x.

This striking result appeared in [16] in the study of
cycling-cost aware models for pay-for-performance storage
operation. The proof relies on an implicit assumption in their
induction method, which restricts combinations of two SoC
profiles to those consisting of the same number of non-
zero step changes. Extensions of that proof method rely
on identifying and enumerating new scenarios. We avoid
the need for this enumeration through an alternate proof
method, which builds upon [16, Lemma 1] to extend the
applicability of their result. Due to the page limitations we

592

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 09,2022 at 05:07:31 UTC from IEEE Xplore.  Restrictions apply. 



omit the proof here, it is provided in the technical report [19].
An important consequence of Theorem 1 is that it makes
our economic dispatch problem (2) convex. Therefore, off-
the-shelf solvers can be applied to attain a globally optimal
dispatch with the minimum total cost that strikes a trade-off
between generation and degradation aware storage usage.

B. Dual Pricing and Dispatch Optimality

We now proceed to show how a proper choice of the
price vector p ensures that the optimal dispatch of (2) is
also optimal for subproblems (7) and (8). We use λ ∈ RT

to denote the vector of dual variables associated with the
power balance constraint (2b). The (partial) Lagrangian for
the problem (2) that only relaxes (2b) gives

L1(g,u,x,λ ) := αggT g+βg1T g+Cs +λ
T (D+u−g). (12)

The corresponding dual problem is given by

max
λ

D(λ ) (13)

where for a fixed λ

D(λ ) := min
g,u,x:(1)(3)(4)(5)(6)

L1(g,u,x,λ ) .

Note that the D(λ ) is separable in terms of g and (u,x) as

D(λ ) = Sg(λ )+Ss(λ )+λ
T D, (14)

where Sg(λ ) and Ss(λ ) are respectively equivalent to the
subproblems (7), (8) with market clearing prices p = λ .

This motivates setting the market clearing prices to p= λ ∗,
where λ ∗ is the optimal solution of (13). Intuitively, the
dual variables λ indicate the marginal cost of maintaining
power balance. In fact, since all of the constraints in the
primal problem (2) are affine, linear constraint qualifications
are satisfied, guaranteeing strong duality [20]. Hence the
duality gap is zero and the primal problem (2) and the dual
problem (13) coincides at the optimal values. This implies
the optimality of the decomposition (14). More precisely, the
dual pricing scheme is incentive compatible, as we formalize
below.

Theorem 2. Given an optimal primal-dual solution
(g∗,u∗,x∗,λ ∗) to the economic dispatch problem (2), g∗

and (u∗,x∗) are also optimal with respect to the generator
subproblem (7) and the storage subproblem (8), respectively,
given the market clearing prices p = λ ∗.

The proof is provided in [19]. Theorem 2 ensures that
the dual pricing scheme is incentive compatible in the sense
that given the market clearing prices, the market dispatch
also maximizes the individual profits of the generator and
the storage. In this way, all the participants will be fully
incentivized.

C. Uniqueness of Solution to Storage Subproblem

In general, the storage subproblem (8) is not strictly
convex. Therefore, its solution may not be unique, and the
extension of this problem to potential distributed regimes of
operation, control and market bidding is limited. We explore

here conditions under which the solution to the storage
subproblem is unique.

For ease of analysis, we use βb = 2 as an approximation to
the cycling cost coefficient βb, which is empirically estimated
to be 2.03 [16]. The cycling cost function in (11) then
reduces to

Cs(x) =
αbBE

2
xT M(x)M(x)T x. (15)

We first propose a lemma that will enable us to obtain a suf-
ficient condition for unique solution to storage subproblem.

Lemma 1. Given any incidence matrix N ∈ R(T+1)×T of
rank r, rank([NNT eT

T+1 eT
1 ]

T ) = rank([NT eT
T+1 eT

1 ]
T ) = r′

holds with r′ bounded as min{r+ 1,T +1} ≤ r′ ≤ min{r+
2,T + 1}. Furthermore, if the rank of the incidence matrix
M(x) in (10) is r, rank([M(x)M(x)T eT

T+1eT
1 ]

T ) = r+1.

The proof uses the formula for the rank of a product of
matrices and the fact that the standard basis vectors (e1 and
eT+1) can add at least one and at most two independent rows
to the conjoined matrix.

The following theorem characterizes the sufficient condi-
tion for a unique solution to the storage subproblem (8).

Theorem 3. Assume that storage cycling cost function
Cs(x) takes form of (15) and is differentiable in small
neighbourhood of x∗, where x∗ is optimal for the economic
dispatch problem (2). Assume that all inequality constraints
are satisfied strictly. If the rank of the incidence matrix M(x∗)
is T , then the storage subproblem has a unique solution.

The proof is provided in [19]. The cases in which The-
orem 3 holds are restrictive in the sense that there is no
cycle in the SoC profile x and the profile switches between
charging and discharging half-cycles at every time slot. It
suggests that in general market price signals are not sufficient
to align individual participant incentives with economic dis-
patch objective in fully distributed regimes. The above results
can also be generalized to economic dispatch problems with
multiple generators and storage units, due to the convexity
cycling cost.

V. NUMERICAL SIMULATION

In this section we present numerical results using aggre-
gate demand data for a single day for one zone operated
by the NYISO as an illustrative example (date: 3/9/2020,
Zone H) [21]. For the generator in our setup, we use the
cost coefficients αg = 0.1 and βg = 20 in equation (2a) that
correspond to the average cost coefficients from the IEEE
300-bus system [22], [23]. We assume that the generator
has sufficient capacity to meet the peak demand, i.e. g ≥
maxt{Dt} with g = 0. The storage cycling cost coefficients
are set to αb = 5.24×10−4 and βb = 2.03, which correspond
to empirically determined values based on historical data
[16]. The power rating of the storage is given by u = E

4
and u =−E

4 .
We compute results for three dispatch strategies to gain

more insight into the importance of accounting for storage
degradation in economic dispatch:
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• Generation Centric Dispatch (GCD): Co-optimization
of generation and storage operation that accounts for
only generation cost i.e. eliminating storage degradation
cost from the objective function in (2a). This leads to
a dispatch strategy that is unaware of the cycling cost
associated with storage use (i.e. storage degradation is
a hidden cost that is computed afterwards from the
optimal storage profile). We then define the total cost =
generation cost + hidden cycling cost2;

• Storage Degradation Aware Dispatch (SDAD): Co-
optimization of generation and storage operation that
accounts for both generation cost and storage cycling
cost, i.e. problem (2), in this case total cost = generation
cost + cycling cost;

• Generator Dispatch (GD): Optimization of the generator
profile i.e. there is no storage and the total cost =
generation cost.

Fig. 3: Total cost of GCD, SDAD and GD, and Unaccounted
storage cycling cost of GCD w.r.t. storage capital cost.

Fig. 3 compares the total cost of the dispatch strategies
as we increase the storage capital cost given a fixed storage
capacity. Here we fix the storage capacity to be E = 500MWh
(7.65% storage penetration w.r.t. daily energy demand). As
expected, our approach SDAD gives the minimum total cost
amongst the three, while GCD performs worst, especially as
the storage capital costs increase, as this increases the hidden
cycling costs that are not taken to account for in the dispatch
decisions. The dashed line curve in Fig. 3 right y-axis more
explicitly shows how the unaccounted for storage cycling
cost deteriorates the performance of GCD.

Fig. 4 illustrates the impact of storage capacity on the
total cost of the dispatch strategies with fixed capital cost B.
In these results we use B = 200$/kWh, which corresponds
to current estimated lithium-ion battery costs [24]. Despite
the small difference in the total cost between SDAD and
GD, the difference tends to increase with increasing storage
capacity, meaning more savings with larger storage units.
The total cost of SDAD decreases since the storage is able to
supply the required power with shallower cycle depths, thus
incurring lower degradation cost. In this comparison, GCD
is again worst amongst all, though it improves as storage
capacity grows, since the storage can supply the same amount

2These hidden costs may represent the notion of uplift payment necessary
to incentivize storage participation.

Fig. 4: Total cost of GCD, SDAD and GD, and Unaccounted
storage cycling cost of GCD w.r.t. storage capacity.

of power with fewer cycles and shallower cycle depths. The
unaccounted storage cycling cost for GCD is shown with
dashed line curve in Fig. 4 right y-axis.

Fig. 5: (Top) Demand and generation schedule of GCD, and
SDAD; (Middle) SoC profile of GCD, and SDAD; (Bottom)
Market clearing price of GCD, and SDAD

We now fix both storage capacity to E = 500MWh, and
storage capital cost to B= 200/kWh and examine the optimal
dispatch obtained under GCD and SDAD. The top and
middle panels in Fig. 5 compare the optimal dispatch profile
for generator and storage, respectively. As expected, our
approach SDAD gives shallower depths due to degradation
cost of storage while GCD utilizes storage without any
restrictions. The market clearing price for GCD is flat due to
this unrestricted utilization and sufficient storage capacity in
the market. On the other hand SDAD results in time-varying
market clearing prices as shown in the bottom panel in Fig. 5
because it takes into account the storage degradation as well
as the generation costs.

These examples illustrate the need for an approach like
SDAD that accounts properly for the hidden cycling cost of
storage in order to take into account for the total cost of the
system dispatch.

VI. CONCLUSIONS

In this paper, we formulate and analyze an economic
dispatch problem that intrinsically accounts for cycle-based
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storage degradation costs. Using the convexity of this cycling
cost, we show that the optimal economic dispatch along
with dual pricing is incentive compatible, i.e., individual
participants attain maximum profits given market clearing
prices. Further, with a digraph interpretation of the Rainflow
algorithm, we provide a rank condition on the graph inci-
dence matrix, which linearly maps a SoC profile to half-cycle
depths, to guarantee the uniqueness of the optimal storage
response to market clearing prices. Numerical examples
illustrate that accounting for storage degradation addresses
a potential market inefficiency for storage participation due
to the large unaccounted for storage operational costs in
traditional economic dispatch formulations.
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